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a b s t r a c t

The framework of incompressible nonlinear hyperelasticity and viscoelasticity is applied to

the derivation of one-dimensional models of nonlinear wave propagation in fiber-

reinforced elastic solids. Equivalence transformations are used to simplify the resulting

wave equations and to reduce the number of parameters. Local conservation laws and

global conserved quantities of the models are systematically computed and discussed,

along with other related mathematical properties. Sample numerical solutions are

presented. The models considered in the paper are appropriate for the mathematical

description of certain aspects of the behavior of biological membranes and similar

structures.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Biological membranes are thin soft biological structures that
play vital roles in a living organism (Humphrey, 1998), and
optimize their shape and function in response to stimuli from
the environment (Badir et al., 2013; Checa et al., 2011). With their
thickness rarely exceeding a fewmillimeters, biomembranes are
able to withstand large physiological loads. Typical examples of
biomembranes include the skin (Zöllner et al., 2012), the mucous
membrane lining the air–organ interfaces of the respiratory and
digestive systems (Li et al., 2011), the fetal membrane (Joyce
et al., 2009), the tympanic membrane (Fay et al., 2005), and the
heart valve membranes (Rabbah et al., 2013).

The membrane of a biological cell involves an assembly of
filaments linked together as a part of a network, or associated
with the cell membrane to build a two-dimensional thin
sheet. Two-dimensional biological networks may be wrapped
around a cell as its wall, or attached to its plasma or nuclear
membrane. Structural elements of biological cells are soft and
responsible for the large deformability and easy motion of the
cell, contrary to majority of the engineered man-made thin
structural materials used in sheet industries. The mechanics
of biological membranes is clearly related to the network
architecture and the elasticity of the filaments. Mechanical
models for cells can be derived using either micro/nanos-
tructural or continuum approaches, as explained in detail, for
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example, in Assidi et al. (2011) and references therein.
Although the continuum approach is more straightforward,
the identification of the continuum behavior of a membrane
is challenging, as the membrane may be highly anisotropic
due to unequal chain lengths and properties of the threads.
The constitution of biomembranes as bilayers entails a rather
floppy behavior, with bending as the dominant deformation
mode in comparison to stretching (Boal, 2012).

The complex mechanical behavior of soft biological tis-
sues results from the deformations and interactions of the
constituent phases, including collagen, elastin, muscular, and
matrix components, such as proteoglycans. Collagen fibre-
rich tissues are classically modeled as composite materials
made of one or several families of collagen fibers immersed
into a very soft isotropic solid matrix composed mainly of
proteoglycans. The preferred fibre alignment is described by a
structural tensor entering the strain energy function (Boehler,
1978; Spencer, 1984). Elastin fibers stretch out at low mechan-
ical strains, while the wavy collagen fibers uncrimp without a
marked contribution to the overall skin stiffness (Limbert and
Taylor, 2002). At higher strains, the stretched cross-linked
collagen network carries most of the load up to the char-
acteristic strain locking.

Due to the complex multi-scale hierarchical nature of biolo-
gical tissues and the resulting difficulties in their experimental
characterization, the development of structural models has been
limited to favor continuum-based phenomenological hyperelas-
tic and hyper-viscoelastic models (Hurschler et al., 1997;
Holzapfel and Ogden, 2009; Criscione et al., 2003; Sacks, 2000).
The traditional approach to formulate constitutive laws for
biological soft tissues relies on invariant formulations which
postulate the existence of a strain energy function depending on
a set of tensorial invariants of a certain strain measure. Tensor
invariants are selected that characterize the particular deforma-
tion modes reproducing real deformations of the tissue. An
additive split of the fibre and matrix strain energies is assumed
in such phenomenological models that accordingly decouple
fibre and matrix effects (Holzapfel et al., 2000; Humphrey, 2003;
Humphrey and Yin, 1987; Limbert and Taylor, 2002).

Experimental results reveal the insufficiency of elastic mod-
els due to their rough approximation of the actual response,
since they ignore the time-dependent behavior of tissues
(Prevost et al., 2011; Marchesseau et al., 2010). To address this
deficiency, viscoelastic models are used (Fung, 1993; Roylance,
2001). Time-dependent responses of soft biological tissues have
been analyzed through monotonic tensile tests at various strain
rates and through creep tests (Arumugam et al., 1994; Pioletti
et al., 1996; Yanjun et al., 2001; Shergold et al., 2006; Kettaneh
et al., 2007). A large number of phenomenological constitutive
models have been developed to simulate the experimentally
observed anisotropic and time-dependent biomembrane
response. The anisotropy is modeled by introducing structural
tensors into the constitutive models, as illustrated in, e.g.,
Humphrey and Yin (1987), Ehret and Itskov (2007), Peña et al.
(2011), and Maher et al. (2012). Viscous effects can be modeled
using a viscous potential function (Germain, 1973; Pioletti and
Rakotomanana, 2000; Roan and Vemaganti, 2011).

Wave propagation in soft biological materials has received
considerable attention due to its importance for imaging
techniques, which aim at implicit measurements of mechanical

properties or visualization of organs (Valdez and Balachandran,
2013). In particular, tissue stiffness measurements can be
performed in vivo, through the measurement of shear wave
propagation speeds (Sarvazyan et al., 1998; Sandrin et al., 2003;
Rouze et al., 2013). The development of accurate models for
ultrasound propagation in soft tissues requires the considera-
tion of nonlinear effects in wave propagation, due to the large
amplitudes of the acoustic waves. Taking nonlinear effects into
account is beneficial for modern ultrasound scanners that
employ tissue harmonic imaging, since it provides images with
improved clarity and contrast. The attenuation and dispersion
of waves, as well as the wave speed, are essential parameters
determining the depth reached by the waves and the quality of
images. Due to the presence of constituents with viscous
properties, soft tissues are absorbing at ultrasonic frequencies
with the absorption following a frequency power law. In the
context of nonlinear wave propagation, an accurate model of
acoustic absorption is of particular importance as the genera-
tion of higher frequency harmonics due to nonlinear effects is
balanced with their absorption. Furthermore, since soft biolo-
gical tissues such as biomembranes contain different constitu-
ents, including water, their wave propagation characteristics,
such as the sound speed and density, are weakly heteroge-
neous, with variations between the different types of soft tissue
of the order of 5% (Krouskop et al., 1987).

The assessment of viscoelastic properties of soft tissues has
raised a growing interest in the field of medical imaging in the
last two decades, due to the fact that the measurements of local
changes of stiffness can be used to detect pathologies. Methods
related to dynamic elastography (Krouskop et al., 1987; Lerner
et al., 1988; Yamakoshi et al., 1990), such as sonoelastography
(Parker and Lerner, 1992; Levinson et al., 1995) or transient
elastography (Bercoff et al., 2003; Sandrin et al., 2003), can be
used to determine elastic properties of soft biological tissues.
Beyond the estimate of second order elastic moduli, the quanti-
fication of the nonlinear, anisotropic and viscoelastic effects in
soft solids (Catheline et al., 2003, 2004; Bercoff et al., 2004) is an
important task that transient elastography is able to address,
since the latter images, in real time, the transient propagation of
shear waves. Based on the propagation of mechanical shear
waves in tissues, diverse elastography techniques have the
capability to quantitatively estimate the shear modulus of
tissues, in a noninvasive manner (Bercoff et al., 2004; Palmeri
et al., 2008; Mitri et al., 2011; Orescanin et al., 2010; Vappou et al.,
2009; Hah et al., 2010).

The determination of elasticity model parameters for biolo-
gical membranes is more involved in comparison to isotropic
tissues, due to the occurrence of additional parameters asso-
ciated with the fibrous microstructure. Initial stresses and/or
strains are naturally present in soft biological tissues such as
veins, arteries, skin, muscles, ligaments and tendons; for
instance, skin is in a state of natural tension. The initial
deformation introduces additional effective anisotropy into the
wave propagation equations. The anisotropy of the deformation
pattern due to either an initial state of finite deformation or to
the fibrous microstructure is an important issue for various
reasons: the wave speeds in biological materials are direction-
ally dependent, and depend on the level and distribution of the
existing deformation, onto which displacements associated with
wave propagation are superimposed.
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