Author's Accepted Manuscript

Human dilated ascending aorta: mechanical characterization *via* uniaxial tensile tests

A. Ferrara, S. Morganti, P. Totaro, A. Mazzola, F. Auricchio

www.elsevier.com/locate/jmbbm

PII: S1751-6161(15)00292-1

DOI: http://dx.doi.org/10.1016/j.jmbbm.2015.08.021

Reference: JMBBM1581

To appear in: Journal of the Mechanical Behavior of Biomedical Materials

Received date: 29 May 2015 Revised date: 1 August 2015

Accepted date: 11 August 2015

Cite this article as: A. Ferrara, S. Morganti, P. Totaro, A. Mazzola, F. Auricchio, Human dilated ascending aorta: mechanical characterization via uniaxial tensile tests, *Journal of the Mechanical Behavior of Biomedical Materials*, http://dx.doi.org/10.1016/j.jmbbm.2015.08.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Human dilated ascending aorta: mechanical characterization *via* uniaxial tensile tests

A. Ferrara^{a,*}, S. Morganti^b, P. Totaro^c, A. Mazzola^c, F. Auricchio^a

^aDipartimento di Ingegneria Civile e Architettura (DICAr), Università degli Studi di Pavia, Pavia, Italy ^bDipartimento di Ingegneria Industriale e dell'Informazione (DIII), Università degli Studi di Pavia, Pavia, Italy ^cDipartimento Cardio-Toraco-Vascolare, IRCCS Policlinico San Matteo, Pavia, Italy

Abstract

Aneurysms of the ascending aorta (AsAA), i.e., a progressive and localized dilatation of the first part of the aorta, represent a severe life-threating condition, often occurring with no symptom. AsAA formation is associated with a degeneration of the aortic wall tissue, which leads to changes in the tissue mechanical properties, and in particular to increased wall stress and/or decreased wall ultimate strength. Nowadays, the decision to surgically operate is usually based on the AsAA diameter, although such a criterion is not always predictive.

The present study focuses on the mechanical characterization of the AsAA tissues. Specimens were cut from portions of dilated ascending aorta excised from 46 patients through open-heart surgery. Peak strain, peak stress, and maximum elastic modulus (i.e., tissue stiffness) were measured from uniaxial stress-strain curves. Such (ultimate) mechanical properties were collected for different regions of the aortic wall (anterior and posterior) as well as for different specimen orientations (circumferential and longitudinal). Relationships of ultimate mechanical properties with patient age and sex were also investigated.

The obtained results highlighted a significant anisotropy of the AsAA tissue (as also observed for healthy aortic tissues), with higher value of strength and stiffness in the circumferential than in the longitudinal direction. Higher strength and stiffness were also found in the posterior region with respect to the anterior one for the circumferential orientation, whereas an opposite result was found for the longitudinal orientation. A decreasing trend of ultimate mechanical properties with aging was also highlighted. Finally, a significant difference in the strength between male and female was observed only in the circumferential direction.

Keywords: Ascending aorta aneurysm, dilated aorta, ultimate mechanical properties, uniaxial tensile tests.

Download English Version:

https://daneshyari.com/en/article/7208337

Download Persian Version:

https://daneshyari.com/article/7208337

<u>Daneshyari.com</u>