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a b s t r a c t

The feasibility of determining biphasic material properties using a finite element model of

stress relaxation coupled with two types of constrained optimization to match measured

data was investigated. Comparison of these two approaches, a zero-order method and a

gradient-based algorithm, validated the predicted material properties. Optimizations were

started from multiple different initial guesses of material properties (design variables) to

establish the robustness of the optimization. Overall, the optimal values are close to those

found by Cohen et al. (1998) but these small differences produced a marked improvement

in the fit to the measured stress relaxation. Despite the greater deviation in the optimized

values obtained from the zero-order method, both optimization procedures produced

material properties that gave equally good overall fits to the measured data. Furthermore,

optimized values were all within the expected range of material properties. Modeling stress

relaxation using the optimized material properties showed an excellent fit to the entire

time history of the measured data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Articular cartilage is the bearing surface in freely movable
joints. As a load bearing tissue, the mechanical properties of
articular cartilage are important indicators of its ability to
perform its intended functions, and methods for measuring
its mechanical properties have been developed over the past
30 years. Cartilage is often modeled using biphasic or por-
oelastic theories, which simulate the coupled interactions
between the porous solid skeleton and the mobile tissue fluid
(Mow et al., 1980; Armstrong et al., 1984).

Typically, mechanical properties are estimated by fitting a

constitutive model to experimental data. Depending on the

complexity of the constitutive model and experimental config-

uration, the relationship between the model and experiment

might be expressed as an algebraic equation, the solution of a

differential equation or as a computational model. For example,

the isotropic and transversely isotropic properties of cartilage

have been determined by fitting solutions of differential equa-

tions of biphasic material models to stress relaxation data (Mow

et al., 1980; Cohen et al., 1998). In these cases material proper-

ties were determined by minimizing the squared difference
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between measured and predicted load intensity. Poroelastic

rather than biphasic models are commonly used for computa-

tional models of cartilage since they are easily accessible in

commercially available finite element (FE) codes such as ABA-

QUS, ANSYS, COMSOL, etc. However, Simon (1992) showed that

the linear biphasic and poroelastic theories are related mathe-

matically through a transformation of kinematic variables.
In the past 20 years, computational models have played a

more prominent role in the prediction of material properties
from experimental data. Computational models are particularly
attractive for implementing complex tissue models such as
those with fiber reinforcement, spatially varying properties,
hyperelastic or viscoelastic properties (Oomens et al., 1993;
Cohen et al., 1994; Wilson et al., 2004; Lei and Szeri, 2007; Liu
and Ovaert, 2011; Seifzadeh et al., 2012; Fu et al., 2013; Yao et al.,
2014; Reutlinger et al., 2014). Using an FE model integrated with
optimization routines, material properties can be found by
minimizing the squared difference between simulated and
measured results such as force, stress or displacement. Diverse
optimization algorithms have been used. For example, themean
values of hyperelastic properties of liver tissue were quantified
using Levenberg–Marquardt optimization and verified using
Monte-Carlo methods (Fu et al., 2013), and Liu and Ovaert
(2011) used a differential evolution algorithm combined with a
poroviscoelastic FE model to estimate viscoelastic properties of
hydrogels in creep. Recently, Reutlinger et al. (2014) obtained the
optimized material parameters of intervertebral disc that mini-
mized the error between simulated displacement and experi-
mental displacement after the bounds on hyperelastic
parameters were implemented in the particle swarm optimiza-
tion. In all of the examples cited above, the optimization was
unconstrained. Constraints were not imposed on acceptable
values of material properties or on the fit of measured to
computed responses, i.e., stress or displacement. In addition,
the robustness of the convergence to a set of material properties
was, in general, not investigated in all these investigations.
Wilson et al. (2004) determined the fibril-reinforced poroviscoe-
lastic material properties of cartilage with depth-dependent
collagen orientation by fitting the reaction force and lateral
displacement of the numerical results to the corresponding
experimental values, but they did not provide evidence for a
unique fit using different initial values of the material properties
between lower and upper bounds. However some exceptions
include Lei and Szeri (2007), who showed that the history of
aggregate modulus converged although they did not show the
convergence history of the four other material properties with
different initial guesses. Seifzadeh et al. (2012) predicted the
material properties of human cartilage using a fibril-reinforced
poroviscoelastic model coupled with a simulated annealing
algorithm (MATLAB), which searched for the robustness of
optimization using several initial guesses. In each of the afore-
mentioned investigations the optimization was unconstrained.

The aim of this investigation was to evaluate the feasi-
bility of using constrained optimization to determine the
material properties of a transversely isotropic porous elastic
material from measured stress relaxation data. Optimization
was performed using two different approaches: (a) a zero-
order method, which is available in ANSYS, and (b) a
gradient-based solver in SmartDO, which interfaces with
ANSYS via Tcl/Tk.

2. Methods

Our previously developed and validated transversely isotropic
poroelastic model of unconfined compression stress relaxation
(Chung and Mansour, 2013) was coupled with constrained
optimization procedures. Experimental stress relaxation data
for unconfined compression of growth plate were obtained from
Cohen et al. (1998), who used unconstrained optimization to
predict biphasic material properties (Et ¼ 4:3 MPa, Ea ¼ 0:64 MPa,
νt ¼ 0:49, νat ¼ 0 and k¼ 5� 10�15m4N�1s�1) where the tissue
was loaded at a constant strain rate of 7:6� 10�4s�1 to 10%
strain.

Constitutive relations for a linear anisotropic poroelastic
material can be constructed following the generalized Hooke's
law (Detournay and Cheng, 1993; Simon, 1992; Cheng, 1997)

σij ¼Dijklεkl�αijp ð1Þ

p¼ Kmðζ�αijεiiÞ ð2Þ

Eq. (1) is the constitutive response for the porous solid, where
Dijkl is an elastic modulus tensor of the solid skeleton,
εkl is a total elastic strain tensor, and p is the pore fluid pressure.
For a transversely isotropic material Dijkl has five independent
material constants (Chung and Mansour, 2013) whereas for an
isotropic material Dijkl has two independent material constants
and the Biot coefficient tensor, αij, degenerates into a scalar, i.e.,
αij ¼ αδij where δij is a second-order unit tensor. Eq. (2) is the
constitutive response for the pore fluid, where Km is the Biot
modulus, ζ is the volumetric fluid strain, and εii is the elastic
volumetric strain which is the trace of the strain tensor.

The slow transport of fluid in porous media is governed by
Darcy's law

qi ¼ �κijð∇p� f iÞ ð3Þ

where qi is the fluid mass flow rate, κij is a second-order
permeability tensor, and f i is the fluid body force per unit
volume.

In general, a constrained optimization problem is formulated
as follows: find a vector of design variables fXg ¼ fx1; x2;⋯⋯; xng
that minimizes the objective function F fXgð Þ subject to inequality
constraints on the state variables SLi rSi fXgð ÞrSUi , i¼ 1; 2;⋯⋯;m,
and the lower and upper bounds on the design variables
xLkrxkrxUk , k¼ 1;2;⋯⋯;n, where n is the number of design
variables, and m is the number of state variables which are the
response of the design.

To implement the optimization procedures, the design
variables were the transversely isotropic material properties
fXg ¼ fEt;Ea; νt; νat; kg. Lower and upper bounds on the first
three design variables were set as

3:34 M ParEtr5:76 MPa ð4Þ

0:36 M ParEar0:59 MPa ð5Þ

0:1rνtr0:49 ð6Þ
as in Table 1 of Cohen et al. (1998). Bounds on permeability

1:8� 10�15m4N�1s�1rkr5:0� 10�15m4N�1s�1 ð7Þ
were set from data in Villemure and Stokes (2009), as was the
out of plane Poisson's ratio;

0:01rνatr0:1 ð8Þ
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