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a b s t r a c t

The Holzapfel–Gasser–Ogden (HGO) model for anisotropic hyperelastic behaviour of

collagen fibre reinforced materials was initially developed to describe the elastic properties

of arterial tissue, but is now used extensively for modelling a variety of soft biological

tissues. Such materials can be regarded as incompressible, and when the incompressibility

condition is adopted the strain energy Ψ of the HGO model is a function of one isotropic

and two anisotropic deformation invariants. A compressible form (HGO-C model) is widely

used in finite element simulations whereby the isotropic part of Ψ is decoupled into

volumetric and isochoric parts and the anisotropic part of Ψ is expressed in terms of

isochoric invariants. Here, by using three simple deformations (pure dilatation, pure shear

and uniaxial stretch), we demonstrate that the compressible HGO-C formulation does not

correctly model compressible anisotropic material behaviour, because the anisotropic

component of the model is insensitive to volumetric deformation due to the use of

isochoric anisotropic invariants. In order to correctly model compressible anisotropic

behaviour we present a modified anisotropic (MA) model, whereby the full anisotropic

invariants are used, so that a volumetric anisotropic contribution is represented. The MA

model correctly predicts an anisotropic response to hydrostatic tensile loading, whereby a

sphere deforms into an ellipsoid. It also computes the correct anisotropic stress state for

pure shear and uniaxial deformations. To look at more practical applications, we

developed a finite element user-defined material subroutine for the simulation of stent

deployment in a slightly compressible artery. Significantly higher stress triaxiality and

arterial compliance are computed when the full anisotropic invariants are used (MA

model) instead of the isochoric form (HGO-C model).

& 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jmbbm.2014.06.016
1751-6161/& 2014 Elsevier Ltd. All rights reserved.

nCorresponding author.
E-mail address: patrick.mcgarry@nuigalway.ie (J.P. McGarry).

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 3 9 ( 2 0 1 4 ) 4 8 – 6 0

http://dx.doi.org/10.1016/j.jmbbm.2014.06.016
http://dx.doi.org/10.1016/j.jmbbm.2014.06.016
http://dx.doi.org/10.1016/j.jmbbm.2014.06.016
http://dx.doi.org/10.1016/j.jmbbm.2014.06.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmbbm.2014.06.016&domain=pdf
mailto:patrick.mcgarry@nuigalway.ie
http://dx.doi.org/10.1016/j.jmbbm.2014.06.016


1. Introduction

The anisotropic hyperelastic constitutive model proposed
by Holzapfel et al. (2000) (henceforth referred to as the
HGO model) is used extensively to model collagen fibre-
reinforced biological materials, even more so now that it
has been implemented in several commercial and open-
source Finite Element (FE) codes for the simulation of soft
tissue elasticity.

The constitutive equation builds upon previously pub-
lished transversely isotropic constitutive models (e.g. Weiss
et al., 1996) and reflects the structural components of a
typical biological soft tissue, hence its strain-energy density
consists of two mechanically equivalent terms accounting for
the anisotropic contributions of the reinforcing fibre families,
in addition to a term representing the isotropic contribution
of the ground matrix in which the fibres are embedded. Also,
it assumes that the collagen fibres do not support compres-
sion, and hence they provide a mechanical contribution only
when in tension (this may be taken care of by pre-multiplying
each anisotropic term with a Heaviside, or “switching”,
function).

For the original incompressible HGO model the strain
energy Ψ is expressed as a function of one isochoric isotropic
deformation invariant (denoted as I1) and two isochoric
anisotropic invariants (denoted as I4 and I6). A Lagrange
multiplier is used to enforce incompressibility (Holzapfel
et al., 2000). Once again it should be stressed that the original
HGO model is intended only for the simulation of incom-
pressible materials.

A modification of the original HGO model commonly
implemented in finite element codes entails the replacement
of the Lagrange multiplier penalty term with an isotropic
hydrostatic stress term that depends on a user specified bulk
modulus. This modification allows for the relaxation of the
incompressibility condition and we therefore refer to this

modified formulation as the HGO-C (compressible) model for
the remainder of this study.

The HGO-C model has been widely used for the finite
element simulation of many anisotropic soft tissues. For
example, varying degrees of compressibility have been
reported for cartilage in the literature (e.g. Guilak et al.,
1995; Smith et al., 2001). It has been modelled as a compres-
sible material using the HGO-C model (e.g. Peña et al., 2007
used Poisson's ratio, ν¼ 0:1 and Pérez del Palomar and
Doblaré (2006) used ν¼ 0:1 and ν¼ 0:4). To date, material
compressibility of arterial tissue has not been firmly estab-
lished. Incompressibility was assumed by the authors of the
original HGO model and in subsequent studies (e.g. Kiousis
et al., 2009). However many studies model arteries as com-
pressible or slightly compressible (e.g. Cardoso et al., 2014,
ν¼ 0:33–0:43 and Iannaccone et al., 2014, ν¼ 0:475). In addi-
tion to arterial tissue the nucleus pulposus of an inter-
vertebral disc has been modelled as a compressible aniso-
tropic material using the HGO-C model (e.g. Maquer et al.,
2014, ν¼ 0:475). Furthermore the HGO-C formulation has been
used to simulate growth of anisotropic biological materials,
where volume change is an intrinsic part of a bio-mechanical
process (e.g. Huang et al., 2012, ν¼ 0:3). However, the enforce-
ment of perfect incompressibility may not be readily
achieved in numerical models. As an example, the finite
element solver Abaqus/Explicit assigns a default Poisson's
ratio of 0.475 to “incompressible” materials in order to
achieve a stable solution (Abaqus, 2010) and in this case the
HGO-C model must be used (e.g. Conway et al., 2012; Famaey
et al., 2012). Despite the widespread use of the HGO-C model,
its ability to correctly simulate anisotropic compressible
material behaviour has not been established previously:

� The first objective of this study is to demonstrate that the
HGO-C formulation does not correctly model an anisotro-
pic compressible hyperelastic material.

Nomenclature

I identity tensor
Ψ Helmholtz free-energy (strain-energy) function
Ψvol volumetric contribution to the free energy
Ψaniso anisotropic contribution to the free energy
Ψ iso isotropic contribution to the isochoric free energy
Ψ aniso anisotropic contribution to the isochoric

free energy
σ Cauchy stress
σ0 deviatoric Cauchy stress
q von Mises equivalent stress
σhyd hydrostatic (pressure) stress
F deformation gradient
J determinant of the deformation gradient; local

ratio of volume change
C right Cauchy–Green tensor
I1 first invariant of C
I4;6 anisotropic invariants describing the deformation

of reinforcing fibres

F isochoric portion of the deformation gradient
C isochoric portion of the right Cauchy–Green

deformation tensor
I1 first invariant of C
I4;6 isochoric anisotropic invariants
a0i, i¼4, 6 unit vector aligned with a reinforcing fibre in

the reference configuration
ai, i¼4, 6 updated (deformed) fibre direction (¼ Fa0i)
κ0 isotropic bulk modulus
μ0 isotropic shear modulus
ki, i¼1, 2 anisotropic material constants
ν isotropic Poisson's ratio

Bold uppercase symbols represent second order
tensors, bold lowercase symbols represent vec-
tors and un-bold symbols represent scalars.

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 3 9 ( 2 0 1 4 ) 4 8 – 6 0 49



Download English Version:

https://daneshyari.com/en/article/7208620

Download Persian Version:

https://daneshyari.com/article/7208620

Daneshyari.com

https://daneshyari.com/en/article/7208620
https://daneshyari.com/article/7208620
https://daneshyari.com

