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a b s t r a c t

Geometric instabilities in living structures can be critical for healthy biological function,

and abnormal buckling, folding, or wrinkling patterns are often important indicators of

disease. Mathematical models typically attribute these instabilities to differential growth,

and characterize them using the concept of fictitious configurations. This kinematic

approach toward growth-induced instabilities is based on the multiplicative decomposi-

tion of the total deformation gradient into a reversible elastic part and an irreversible

growth part. While this generic concept is generally accepted and well established today,

the critical conditions for the formation of growth-induced instabilities remain elusive and

poorly understood. Here we propose a novel strategy for the stability analysis of growing

structures motivated by the idea of replacing growth by prestress. Conceptually speaking,

we kinematically map the stress-free grown configuration onto a prestressed initial

configuration. This allows us to adopt a classical infinitesimal stability analysis to identify

critical material parameter ranges beyond which growth-induced instabilities may occur.

We illustrate the proposed concept by a series of numerical examples using the finite

element method. Understanding the critical conditions for growth-induced instabilities

may have immediate applications in plastic and reconstructive surgery, asthma, obstruc-

tive sleep apnoea, and brain development.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Structural instabilities in the form of creases, folds, or
wrinkles are inherent to living matter. In many living sys-
tems, the formation of structural instabilities is critical to
biological function, e.g., to increase the surface-to-volume
ratio of the system (Wyczalkowski et al., 2012). Typical
examples are wrinkling of skin (Buganza Tepole et al., 2011),
villi formation in the intestine (Balbi and Ciarletta, 2013),
and folding of the developing brain (Xu et al., 2010). In other
biological systems, however, the formation of structural

instabilities can be a critical hallmark of disease, e.g., when
associated with a narrowing lumen. The most prominent
example of this latter category is the folding of the mucous
membrane in asthmatic airways (Wiggs et al., 1997). It is thus
not surprising that the mathematical modeling of folding in
tubular organs (Ciarletta and Ben Amar, 2012), in particular
the modeling of the folding mucous membrane (Moulton
and Goriely, 2011; Li et al., 2011; Xie et al., 2013), has drawn
increasing scientific attention within the past decade.

Continuum approaches toward the formation of geometric
instabilities in living systems typically adopt the concept of
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finite growth (Rodriguez et al., 1994). This kinematic approach
toward growth is based on the introduction of a fictitious
growth configuration (Garikipati, 2009) and on the multi-
plicative decomposition of the deformation gradient into
a reversible elastic and an irreversible growth part (Taber,
1995). Mathematically speaking, in this approach, growth is
represented through a second order, isotropic (Himpel et al.,
2005), transversely isotropic (Zöllner et al., 2012), orthotropic
(Göktepe et al., 2010), or generally anisotropic growth tensor.
As discussed in a recent review article on growth (Ambrosi
et al., 2011), the evolution of this growth tensor is typically
either morphogenetically driven (Li et al., 2012) or mechani-
cally driven (Menzel and Kuhl, 2012).

Here we focus on morphogenetically driven growth and on
its role in the formation of structural instabilities. The first
rigorous mathematical analyses of growth-induced morphoge-
netic instabilities studied the failure models of a shrinking
spherical shell (Goriely and BenAmar, 2005) and of a growing
spherical shell under external pressure (Ben Amar and Goriely,
2005). Motivated by the clinical problem of mucosal folding
during chronic airway wall remodeling, recent studies explored
the buckling of single-layered (Moulton and Goriely, 2011) and
double-layered (Cao et al., 2012; Jin et al., 2011) hollow cylind-
rical tubes. In realistic airway wall geometries, the thickness of
the folding inner layer is typically orders of magnitude smaller
than the cylindrical airway structure itself. Accordingly, a recent
study suggested to model mucosal folding using the concept of
surface growth (Papastavrou et al., 2013), an approach for which
the mucosal surface itself is equipped with its own potential
energy (Steinmann, 2008). A similar approach was recently
proposed for the longitudinal growth in double-layered cylin-
ders (Vandiver and Goriely, 2009) to simulate the effects of
surface growth in plants (Holland et al., in press).

Inhomogeneous growth induces a state of prestrain or
residual stress (Fung, 1991). Residual stress, which must not be
confused with prestress in this paper, is the stress in a body in
the unloaded configuration (Menzel, 2005; Rausch et al., in press;
Rausch and Kuhl, 2013). In the following we distinguish between
two geometrically identical reference configurations, one stress-
free and one pre-stressed. We assume that the reverse (elastic)
deformation from the stress-free grown configuration to the pre-
stressed reference configuration results in pre-stress. The theory
of elasticity for a body under initial stress (prestress here)
was first established by Biot (1939). More recently, Johnson and
Hoger (1993) studied the dependence of the elasticity tensor on
residual stress where the residual stress was produced by an
elastic deformation (Hoger, 1986; Marlow, 1992; Hoger, 1993).
The problem of dead loading in the mathematical theory of
linear elasticity with initial stress (Man and Carlson, 1994) bears
certain similarities to our analysis here. Ogden (1992) details on
stability and uniqueness of solution of incremental boundary
value problem. In Ogden (2003), he employed his generic method
to soft tissues and tube extension/inflation problems with
residual stresses arising from a uniform circumferential stress.
For further mathematical details of symmetry, bifurcation, and
instabilities in the context of elasticity with a prestressed
reference configuration we refer to Bharatha and Levinson
(1978), Capriz and Guidugli (1979), and Wan and Marsden (1983).

In the theory of linear elasticity, a condition for the existence
of solutions is that incremental deformations require positive

energy. This physically motivated condition translates into the
mathematically motivated condition of pointwise stability. In the
classical theory of elasticity the pointwise stability condition
corresponds to the positive definiteness of the constitutive
tensor. However, in the context of prestress, we cannot simply
adopt this classical pointwise stability condition for two reasons:
(i) The condition that the elasticity tensor is positive definite may
no longer be feasible; and (ii) The pointwise stability condition
does not directly render the positive definiteness of the consti-
tutive tensor, since there are several elasticity tensors, all of
which are functions of the prestress that describe prestressed
materials (see similar discussions in Hoger, 1995, for the case of
residual stress). In this paper, we re-establish the governing
equations for prestressed continua and properly impose the
pointwise stability condition.

The necessary and sufficient conditions for the loss of well-
posedness of the boundary value problem for linear elastic,
homogeneous continua are the loss of strong ellipticity of the
governing equations and the boundary complementing condi-
tion (see e.g. Simpson and Spector, 1985; Benallal et al., 1993). A
sufficient condition for stability of elastic continua is the point-
wise stability criterion (Hill, 1957). A general theory of uniqueness
and stability for elasto-plastic solids was given by Hill (1958). The
propagation of surface waves in bodies has been investigated in
Dowaikh and Ogden (1990). Bifurcation in the form of surface
instabilities has been investigated for arbitrary nonlinear elastic
materials under conditions of an equibiaxial prestress (Reddy,
1982), and for plane strain (Reddy, 1983). A comprehensive study
on uniqueness, loss of ellipticity, and localization for the time-
discrete, rate-dependent boundary value problems with soft-
ening can be found in Benallal et al. (2010).

In view of these considerations, the goal of this contribution
is to explore the critical conditions for growth-induced instabil-
ities in living structures. In Section 2, we illustrate the kinematics
of finite growth based on themultiplicative decomposition of the
total deformation gradient into an elastic and a growth part. In
Section 3, we introduce the key idea of this work, the conceptual
replacement of this growth part by prestress. In Section 4, we
discuss the condition for strong ellipticity, the condition for
pointwise stability, and the boundary complementing condition
in the context of prestress. In Section 5, we illustrate these three
conditions for a simple homogeneous model problem, and for
the inhomogeneous problems of growth and shrinkage of a
hollow cylinder and of a solid sphere. We conclude with a critical
discussion and an outlook in Section 6.

1.1. Notation and definitions

The three-dimensional Euclidean space is denoted E3. Direct
notation is adopted throughout. Occasional use is made of index
notation, the summation convention for repeated indices being
implied. The scalar product of two vectors a and b, i.e., the single
contraction, is denoted a � b¼ ½a�i½b�i. The scalar product of two
second-order tensors A and B, i.e., the double contraction, is
denoted A : B¼ ½A�ij½B�ij. The action of a second-order tensor A on
a vector a is understood as ½A � a�i ¼ ½A�ij½a�j and ½a � A�i ¼ ½a�j½A�ji.
The double contraction of a third-order tensor C and a second-
order tensor B renders a vector according to ½C : B�i ¼ ½C�ijk½B�jk.
The action of a third-order tensor C on a vector a, denoted C � a,
is a second-order tensor with components ½C � a�ij ¼ ½C�ijm½a�m.
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