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ARTICLE INFO ABSTRACT

Growth and remodeling of biological tissues involves mass exchanges between soluble building
blocks in the tissue's interstitial fluid and the various constituents of cells and the extracellular
matriX. As the content of these various constituents evolves with growth, associated material
properties, such as the elastic modulus of the extracellular matrix, may similarly evolve.
Therefore, growth theories may be formulated by accounting for the evolution of tissue
composition over time in response to various biological and mechanical triggers. This approach
has been the foundation of classical bone remodeling theories that successfully describe Wolff's
law by establishing a dependence between Young's modulus and bone apparent density and by
formulating a constitutive relation between bone mass supply and the state of strain. The goal of
this study is to demonstrate that adding tissue composition as state variables in the constitutive
relations governing the stress-strain response and the mass supply represents a very general
and straightforward method to model interstitial growth and remodeling in a wide variety
of biological tissues. The foundation for this approach is rooted in the framework of mixture
theory, which models the tissue as a mixture of multiple solid and fluid constituents. A further
generalization is to allow each solid constituent in a constrained solid mixture to have its own
reference (stress-free) configuration. Several illustrations are provided, ranging from bone
remodeling to cartilage tissue engineering and cervical remodeling during pregnancy.
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of growth (Skalak et al., 1982, 1997; Rodriguez et al,, 1994; Menzel
and Kuhl, 2012); accounting for distinct growth histories of the
constituents of heterogeneous mixtures (Humphrey and Rajagopal,
2002; Garikipati et al, 2004; Ateshian, 2007; Wan et al, 2010;

1. Introduction

Growth processes are fundamental in nature, whether they occur
in biological or non-living systems (Taber, 1995; Ambrosi et al,, 2011).

Theoretical frameworks for modeling growth can be used to gain
insight into growth mechanics, by examining the theoretical feasi-
bility of hypothesized growth mechanisms. Growth models may also
be used to understand the evolution of tissue structure and function
and to optimize growth conditions in tissue engineering studies.
In the biomechanics literature, theoretical frameworks have
addressed the challenge of modeling the adaptive response of tissues
to loading (Cowin and Hegedus, 1976; Cowin, 1983; Huiskes et al,
1987; Weinans et al,, 1992; Taber and Humphrey, 2001; Humphrey,
2009); describing morphogenesis using a kinematic description
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Ateshian and Humphrey, 2012; Cowin and Cardoso, 2012); describing
the evolution of residual stresses due to growth (Skalak et al., 1996;
Hoger, 1997; Taber and Humphrey, 2001; Guillou and Ogden, 2006;
Ateshian and Ricken, 2010; Menzel and Kuhl, 2012); accounting for
chemical reactions among fluid and solid constituents of a hetero-
geneous mixture (Garikipati et al, 2004; Ateshian, 2011, 2007;
Narayanan et al,, 2009); describing cell growth via osmotic mecha-
nisms (Ateshian et al,, 20093, 2012); and other related phenomena.
Mixture theory (Truesdell and Toupin, 1960; Bowen, 1968, 1969)
has been favored in many recent studies to describe growth
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mechanics (Humphrey and Rajagopal, 2002; Garikipati et al., 2004;
Ateshian, 2007; Cowin and Cardoso, 2012). In this framework,
interstitial growth represents the addition (or removal) of mass from
the porous solid matrix of a mixture whose interstitial fluid provides
the building blocks (or nutrients) for growth in the form of solutes
mixed in a solvent. As such, the mass content, or composition, of the
mixture represents a set of state variables in this growth framework
(Ateshian, 2007, 2011; Ateshian and Ricken, 2010). Lengthy back-
ground reviews of the mixture theory framework have been pre-
sented elsewhere (Epstein and Maugin, 2000; Ateshian, 2007; Cowin
and Cardoso, 2012). Given these extensive backgrounds, the objective
of this review is to reformulate the salient aspects of mixture growth
theory using a didactic approach that extends the framework of
elasticity theory by simply adding mass content as a set of state
variables. It is shown that this approach reiterates the pioneering
work of Cowin and Hegedus (1976), who formulated a growth
framework responsive to the loading environment without appealing
explicitly to mixture theory, yet producing most of the salient findings
from those subsequent derivations. This framework also serves as the
foundation of the popular bone remodeling theory proposed by
Huiskes et al. (1987), Weinans et al. (1992) and Mullender et al.
(1994). Other examples off this growth framework are provided,
which exhibit increasing levels of complexity with regard to depen-
dence on composition, to illustrate the breadth and depth of this
theoretical foundation for growth. Examples from cartilage tissue
engineering provide illustrations of the interaction of proteoglycan
growth and glucose supply, as well as the growth of collagen having
different reference configurations at different times in the growth
process. Another example proposes an approach for modeling the
dramatic changes in the material behavior of the cervix over the
normal period of gestation by considering the turnover of collagen
from mature crosslinked fibers to immature loosely connected fibrils.

2. Growth mechanics
21. Hyperelasticity

In classical hyperelasticity theory, the constitutive relation relating
stress to strain in a solid is derived from an energy potential, usually
described as the strain energy density, and more generally known
as the Helmholtz free energy density. This energy potential is
conventionally expressed as the free energy in the current config-
uration per volume of the solid in the reference configuration, where
the reference configuration represents a stress-free state; it is
denoted here as ¥,. Since all strain measures may be derived from
the deformation gradient of the solid, F°, the Helmholtz free energy
density may be constitutively expressed as a function of this
measure, ¥,(F°). Following standard procedures involving entropy
inequality, the Cauchy stress is then given by
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where J* =det F’. Any number of constitutive relations may be
formulated for ¥,(F°) and their associated material properties are
necessarily constants. This constitutive formulation may be slightly
generalized by letting the free energy also depend on absolute
temperature, 9, but not its gradient, thus limiting analyses to
isothermal problems. With ¥,(6,F%), the material properties asso-
ciated with the stress—strain response may vary with temperature,

and the entropy density (entropy per volume of the solid in the
reference configuration) of the system is no longer zero

2
Hr=-21. 2.2)

When solving problems in hyperelasticity, it is necessary to also
recognize that the mass density p° of the solid is constrained by the
relation

P =p/l, (23)

where pi is the mass density in the reference configuration, which is
invariant. This constraint is obtained from the balance of mass
relation for the solid,

D*p*
Dt
where v¢ is the velocity of the solid and D*(-)/Dt is the material time
derivative in the spatial frame, following the solid. Recognizing from
kinematics that div v¢ = (J°)"}(D°J°/Dt), the mass balance equation
may also be written as D*(p%J*)/Dt = 0, which may be integrated to
produce the result of Eq. (2.3). Eqgs. (2.1)-(2.4) provide a succinct
summary of the classical framework for hyperelasticity in the
absence of any growth processes.

+p5divve =0, 24)

2.2.  Interstitial growth of a single solid constituent

Interstitial growth is the process that adds or removes solid mass at
locations inside a solid material. For this process to occur, there must
be interstitial space within this material to allow atoms or molecules
to bind to the underlying substrate. For biological tissues, this is
typically the pore space normally filled with the interstitial fluid that
carries those molecules. Therefore, it is helpful to recognize the solid
material as a porous matrix, whose pores fill with additional solid
material during growth or conversely become more porous with
negative growth (desorption of the solid). Growth may occur within
cells as well as in the extracellular matrix (ECM) of a tissue. Both the
cell and the ECM may be treated as mixtures with a porous matrix
and an interstitial fluid consisting of a solvent and solutes. In a
porous solid, the solid mass density p° is called the apparent density,
since it measures the mass of the solid per volume of an elemental
region that contains porous solid and interstitial fluid (the mixture).
Since mass is exchanged between the porous solid and the inter-
stitial fluid, the mass balance relation for the solid must account for
this exchange

S
DD—/;S+p5 divv® =p°, (2.5)
with p° representing the mass supply to the solid from all solute
species in the interstitial fluid. Using the kinematic relation relating
the divergence of the solid velocity to the determinant of the
deformation gradient, this balance relation may be rewritten as

S S
Do 26)
where p = pSJ° and p; = p°J°. This relation shows that p is no longer
invariant when growth occurs, though its evolution over time may
be obtained by integrating Eq. (2.6) when given a suitable consti-
tutive relation for p;. This type of constitutive relation may be
derived from chemistry (Prud’homme, 2010) to determine the rate
of the chemical reaction for the exchange of mass with the solid,
or from mechanics, as proposed by Cowin and Hegedus (1976) and
further illustrated below.
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