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ABSTRACT

The goal of this manuscript is to set up a novel methodology for the calculation of the
effective mechanical properties of biological membranes viewed as repetitive networks of
elastic filaments, based on the discrete asymptotic homogenization method. We will show
that for some lattice configurations, flexional effects due to internal structure mechanisms
at the unit cell scale lead to additional flexional effects at the continuum scale, accounted
for by an internal length associated to a micropolar behavior. Thereby, a systematic
methodology is established, allowing the prediction of the overall mechanical properties
of biological membranes for a given network topology, as closed form expressions of the
geometrical and mechanical micro-parameters. The peptidoglycan and the erythrocyte
have been analyzed using this methodology, and their effective moduli are calculated and
recorded versus the geometrical and mechanical lattice parameters. A classification of
lattices with respect to the choice of the equivalent continuum model is proposed: The
Cauchy continuum and a micropolar continuum are adopted as two possible effective
medium, for a given beam model. The relative ratio of the characteristic length of the
micropolar continuum to the unit cell size determines the relevant choice of the equivalent
medium. In most cases, the Cauchy continuum is sufficient to model membranes in most of
their configurations. The peptidoglycan network may exhibit a re-entrant hexagonal lattice,
for which micropolar effects become important. This is attested by the characteristic length
becoming larger than the beam length for such configurations. The homogenized moduli
give accurate results for both membranes, as revealed by comparison with experimental
measurements or simulation results from the literature at the network scale. A first insight
into the nonlinear mechanical behavior of the hexagonal and triangular networks is lastly
investigated using a perturbative method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction or are associated with the cell membrane to build a two-

dimensional thin sheet. Two-dimensional biological networks
The membrane of biological cells is made of the assembly may be wrapped around a cell as its wall or attached
of filaments which are linked together as part of a network to its plasma or nuclear membrane. Structural elements
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of biological cells are soft and responsible for the large
deformability and easy motion of the cell, contrary to
most of the engineered man-made thin structural materials.
The mechanics of biological membranes is clearly related
to the network architecture and to the elasticity of the
building entities of the network, which are known to
obey entropic elasticity. The main originality advocated in
this work (compared to the literature works referenced
before) is the explicit derivation of the full stiffness
matrix of biological membranes, viewed as planar repetitive
networks of connected threads, as closed form expressions
of the geometrical and mechanical micro-parameters of
the underlying network. Moreover, we shall justify the
use of continuum models with an enriched kinematics
such as micropolar continua according to length scale
considerations. As a third novel aspect, the construction of
the effective mechanical response in the large strain regime
using the same homogenization technique will be done. The
development of predictive nanomechanical models aiming at
understanding the impact of the network architecture and
mechanical properties on the continuum scale is important,
as the experimental determination of the mechanical
properties of biological membranes is delicate, and the
membrane anisotropy and large deformability have to be
accounted for, Boey et al. (1998), Discher et al. (1998). As stated
in Lim et al. (2006), mechanical models for cells are derived
using either the micro/nanostructural approach or the
continuum one. Although providing less insight into detailed
molecular mechanical events and biochemical couplings,
the continuum approach is easier and more straightforward
to use in computing the mechanical properties of the cell
and its response under biomechanical loading. Moreover,
the established continuum mechanical model can provide
details on the distribution of stress and strains induced in
the cell and can be integrated in finite element simulations
at the scale of the whole cell. However, the identification
of the continuum behavior of a membrane is challenging,
as it may be highly anisotropic due to unequal chain
length and properties of the threads within the molecular
network may vary; furthermore, biological membranes are
prone to large distensions and one should ideally consider
nonlinear effects. Hence, micromechanical approaches are
needed in order to bridge the scales and to provide a
constitutive law at a continuum scale, whereby the equivalent
continuum properties are related to both the geometrical
and mechanical nanostructural parameters of the network.
The derivation of the equivalent mechanical properties of
cellular biological structures is also interesting in order
to understand the somewhat peculiar observed behavior
(anisotropy, negative Poisson’s ratio, (Boal et al., 1993)) and to
possibly evaluate the load bearing capacity of the membrane
architecture. Especially, closed form expressions of those
effective properties would allow relating the mesoscopic to
the maroscopic level, to understand the nanoscale origin of
the mechanical behavior of the membrane wall, and to assess
the effect of the membrane topology (comparison of different
membrane architectures will be possible).

We shall employ the so-called discrete asymptotic homog-
enization technique as in Caillerie et al. (2006), which is per-
fectly suited to the discrete architecture of the membrane at

the nano-level. Two types of equivalent continuum shall be
considered, a classical Cauchy continuum and a micropolar
medium, according to the value of a characteristic microp-
olar length. This last aspect constitutes the main and novel
thrust of this contribution, especially when considering bio-
logical membranes.

2. Impact of microstructural irregularity

Homogenization techniques for discrete media have been
extensively used in the last decade, but they have a significant
limitation in that they do not account for natural variations
in the lattice topology, which are observed for most biological
materials. Most models of 2D cellular structures are based on
idealized unit cells intended to describe the micro-structural
features of an average cell supposed to be representative of
the real underlying structure. Those approaches do however
not account for the complex and rather diverse mechanisms
leading to membrane rearrangements usually referred to
as remodeling; those mechanisms involving a complex
machinery of proteins can be broadly classified as fusion or
fission, including exocytosis and endocytosis, budding and
fusion of transport carriers, relaxation of the elastic energy,
as listed in the recent review paper (Kozlov et al., 2010).

The network topology may also vary as abnormal RBC
skeletons have been reported, Hansen et al. (1997). Those vari-
ations lead to irregular cells and to non-periodic arrangement
of the cell walls. Therefore, a quantitative study to investigate
how the micro-structural variability can affect the macro-
scopic effective mechanical properties has been performed
as a preliminary step. Statistical variations in the underly-
ing models have been accounted for (Silva et al., 1995; Silva
and Gibson, 1997; Zhu et al., 2001; Alkhader and Vural, 2008).
Several methods described in Kraynik et al. (1991) account
for a variability in the arrangement of cell walls of hexag-
onal honeycombs by modifying the initial two-dimensional
unit cell analysis, Warren and Kraynik (1987). Those authors
develop structure-property relationships for arrays of hexag-
onal cells endowed with varying sizes and shapes, but they
conserve an angle of 120° between the three struts com-
mon to each node. The results of those authors lead to
the conclusion that the specific spatial arrangement and
size distribution of the unit cells hardly affect their elastic
response.

In order to generate a microstructural irregularity (or non-
periodicity), a spatial perturbation has been applied to the
vertices of a regular triangular truss network in random
directions (Der Burg et al.,, 1997; Chen et al., 1999; Chen
and Fleck, 2002; Alkhader and Vural, 2008), expressed by the
following equations:

X;=Xi+Arcos®) ¥ =y +Arrsin®) (1)

where 6 is a uniformly distributed random variable, r is a ran-
dom variable and le and Vi/ are the perturbed coordinates, with
the non primed component being the original coordinates. A
is the perturbation parameter which specifies the degree of ir-
regularity; note that it has been chosen in a manner that cell
convexity is preserved. Fig. 1 shows different cellular struc-
tures generated for different values of 1. Each topology is 9 x 9



Download English Version:

https://daneshyari.com/en/article/7209527

Download Persian Version:

https://daneshyari.com/article/7209527

Daneshyari.com


https://daneshyari.com/en/article/7209527
https://daneshyari.com/article/7209527
https://daneshyari.com

