
 

SOFTLY SWITCHED ROBUSTLY FEASIBLE MPC FOR CONSTRAIN ED LINEAR 
SYSTEMS UNDER SET BOUNDED UNCERTAINTY- LQ-MPC WITH IC ACTION 

 
 

                  P. Deinrych *, A. Szumski *, M.A. Brdys **, M. Grochowski *, P. Szczygielski *   
 

* Faculty of Electrical and Control Engineering, Gdan sk University of Technology, 
 ul. Narutowicza 11/12, 80-952 Gdansk, Poland 

email: m.brdys@ely.pg.gda.pl; p.deinrych@ely.pg.gda .pl; m.grochowski@ely.pg.gda.pl; 
p.szczygielski@ely.pg.gda.pl; a.szumski@ely.pg.gda. pl  

 

** Department of Electronic, Electrical and Computer E ngineering, University of 
Birmingham, Birmingham B15 2TT, UK; email: m.brdys@ bham.ac.uk 

 
Abstract: An efficient plant control under state an d output constraints under a wide range 
of operating conditions is not possible by one cont roller. Hence, the concept of multiple 
controllers being switched as required by operating  conditions is an attractive option. 
Quite often, hard switching of the controllers may not be desired due to variety of reasons 
or not possible at all. The paper considers soft sw itching of the predictive controllers 
utilizing the invariant sets theory to constrained linear discrete time invariant system 
operating under bounded additive disturbances. The applied resulting softly switched 
predictive controller (SS MPC) with the integral ac tion activates smooth and robustly 
feasible tracking of the plant output reference tra jectory under wide range of operating 
conditions. The controller performance is illustrat ed by simulations. Copyright © 2006 
IFAC.  
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1. INTRODUCTION 

 
Model Predictive Control (MPC) is one of the most 
popular control techniques thanks to its ability to  
efficiently handle state and control constrains and  to 
deal with existing uncertainty (Kothare et al., 1996; 
Mayne et al., 2000). In most cases, it is difficult or 
even impossible to handle full range of the system 
operating conditions by one universal control 
strategy. Therefore, arises an idea to utilize seve ral 
different control strategies and to skilfully switc h 
between them (Brdys, et al., 2004; Brdys and Wang, 
2005; Grochowski, et al., 2004; Wang, et al., 2005). 
Given a plant to be controlled and a set of objecti ves 
to be achieved the model predictive controller is 
defined by specifying the performance index 
(function) and constraints on the decision vector a nd 
states/outputs of the plant. The constraints and 
performance index express the control objectives. 
The MPC as such is then considered as a control 
strategy determined by the set of control objective s. 
It is very difficult or even impossible to achieve all 
the worthwhile operational objectives during plant 
operation under wide range of the operating 
conditions. Hence, it is impossible to handle 
sufficiently well all the operating conditions of t he 
plant by using one control strategy. In order to be st 
adopt the control actions to the actual and predict ed 
conditions, different control strategies were desig ned. 
As the operating conditions vary the best control 
strategy should be selected on line. The overall 

predictive controller is then the switched controll er. 
Newly developed techniques for smooth switching 
the control strategies lead to a softly switched MP C 
(Brdys, et al., 2007; Brdys, et al., 2004; Bryds and 
Wang, 2005; Grochowski, et al., 2004; Wang, et al., 
2005). This paper proposes a method of soft 
switching the MPC controllers taking full advantage  
of Integral Control methodology in order to reject 
constant and/or slowly varying disturbances. 
Moreover, feasibility of controllers operating on t heir 
own and during the switching phase is guaranteed by  
utilizing the properties of invariant sets (Rossite r, 
2006; Wang, et al., 2005).  
The paper is organised as follows. Section 2 
formulates the control problem and presents the bas ic 
definitions. General information about determining 
the invariant sets as well as the way of its utiliz ing 
into control process are presented in Section 2. 
Section 3 derives the soft switching algorithm and 
investigates the properties of resulting Softly 
switched robustly feasible model predictive 
controller. Finally, the derived controller is test ed 
based on a simple second order dynamic system and 
the simulation results are presented in Section 4. 
 

2. CONTROL STRATEGY 
 
This paper considers discrete state space model wit h 
additive uncertainty as: 

1k k k kx Ax Bu w+ = + +  

k ky Ex=  (1) 



 

where: wk is the disturbance input which values 
belong to a bounded set W. 
Employed predictive controller with linear quadrati c 
cost function (LQ MPC) is extended by an integral 
action what has enabled for minimizing the output 
tracking error (Deinrych, et al., 2007). Such an 
approach for the system (1) leads to formulation: 
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(2) 

Control law is based on the feedback control 
resulting from solving the optimisation problem wit h 
the linear-quadratic cost function (Pluymers, 2005,  
Rossiter, 2003): 
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with respect to constraints: 

ˆ , {0,..., }i kx X iÎ Î ¥  (4) 

ˆ , {0,..., }i ku U i£ Î ¥  (5) 

where: the X, U are compact polyhedral sets. This 
approach is called the dual mode MPC. As a 
consequence, the control law is as follows: 
 

, {0,..., 1}i i i uu Kx c i H= - + Î -  (6) 

, { ,..., }i i uu Kx i H= - Î ¥  (7) 
 

where the parameter K is the result of solving the 
cost function (3) on infinite control horizon (seco nd 
mode of the dual mode MPC) and the degrees of 
freedom c are the result of solving the quadratic 
problem on the finite horizon to deal with constrai nts 
(4-5). For optimal K (3) takes form: 
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where SDc is a solution of Lyapunov equation 
(Rossiter, 2003; Deinrych, et al., 2007):  
 

� ,     Q B B R Q K RK¢ ¢ ¢= G + G - F GF = +  (9) 
 

Feasibility of the controller is guaranteed by util izing 
the invariant sets as the extra constraints in the 
predictive optimisation procedure (Deinrych, et. al., 
2007; Kerrigan, 2000; Kerrigan and Maciejowski, 
2004). Two kinds of invariant sets are utilized to do it 
(Gilbert and Tin Tan, 1991; Pluymers 2005): 

• the MAS (Maximal Admissible Set) defined for 
system based on linear control law (7); 

• the MCAS (Maximal Control Admissible Set) 
based on the control law (6) with active d.o.f. 
parameters. 

The MAS presents the set of states for which the 
following equations hold: 

0Mx d Mref£ -  (10) 
where matrices M, d and Mref are the result of 
system expansion in order to satisfy constraints (1 0) 
(Deinrych, et al., 2007; Szumski and Szczygielski, 
2006).  

The MCAS is the set of states for which optimisatio n 
problem of considered control strategy is feasible.  
The constraints (4-5) are fulfilled thanks to using  a 
d.o.f. on finite control horizon (Rossiter, 2003; 
Deinrych, et al., 2007): 
 

0Mx Nc Mref d+ + £  (11) 
 

The matrices M, N, Mref and d are the result of 
system expansion. The usage of invariant sets of th e 
above form guarantees achieving optimisation 
problem feasibility in deterministic case. In order  to 
guarantee the robust feasibility under presence of 
uncertainty the invariant sets have to be replaced by 
their robust versions. One of the ways of designing  
robust invariant sets is adding an extra constraint s 
during the determination and computation of theses 
sets taking into account existing bounded uncertain ty 
for instance by utilization of the Pontriagin 
difference. Plant states at the end of the control 
horizon must belong to robust MAS in order to 
ensure control feasibility (Kerrigan, 2000; Deinryc h, 
et al., 2007; Pluymers, et al, 2005).  
 

A single control strategy for system (1) is represe nted 
by: state and control constraints (X, U), reference 
signals (yref), weighting matrices in the cost function 
(Q,R) and control horizon (Hu). Therefore, the single 
control strategy can be formulated as follows: 
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oldX XÌ , oldU UÌ  are compact polyhedral sets.  
Unfortunately, the control strategy described above  
does not guarantee an efficient plant control under  
wide range of possible operating conditions (Brdys,  
et al., 2007; Brdys, et al., 2004; Grochowski, et al., 
2004). For a particular plant number of control 
strategies can be distinguished. The desired (new) 
control strategy is described as follows:  
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The switching moments, switching time and 
switching method are the most important parameters 
to be tuned in the soft switching mechanism, 
however they are not investigated in this paper. Pa per 
focuses on designing the switching algorithm that 
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