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Abstract: Parallel compensator applied for control of SISO and MIMO plants is
proposed. It is based on the replacement plant (RP) which connected in parallel
to the plant changes the property of the latter. There is some freedom in choosing
the transfer function (TF) of the RP. It is shown that the numerator polynomial of
the RPTF determines the characteristic equation of the closed loop (CL) system.
Creating this polynomial from some admissible fast modes assures fast transients
of the CL system. For MIMO plants the elements of the diagonal RPTF are
designed separately, which simplifies the process of design. Copyright c©IFAC 2007.
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1. INTRODUCTION

The plants with pure time delay, or nonminimum
phase and/or of higher order belong to the so
called difficult plants, for which it is difficult to
design a regulator assuring some appropriate ac-
curacy of the control. For these plants an insignif-
icant increase of the regulator gain causes insta-
bility and for small gain the closed loop system
has unsatisfactory accuracy in steady state or slow
transients.

For the plants with pure time delay Smith (1958)
proposed a compensator which effectively takes
the delay outside the loop and allows a feedback
design based on the plant dynamics without delay.

The idea of the parallel compensator for the sys-
tems with nonminimum phase plants was intro-
duced in (Gessing, 2004), by the author of the
present paper. The method of the choice of the
replacement plant was described there with taking
mainly into account the accuracy in steady state.

Another approach to parallel compensator was
presented in (Deng et al., 1999) and in its ref-

erences, where the plants with structured uncer-
tainty were considered. In comparison to (Gessing,
2004) and the present paper the considerations of
(Deng et al., 1999) are significantly more compli-
cated, though they concern only minimum phase
plants.

Above remarks concern the systems with SISO
plants. In the present paper, using the idea of
(Gessing, 2004) a new method of design of the
replacement plant ( RP) both for SISO and MIMO
plants is described. The presented method makes
it possible to design the systems with faster
(shorter) transients. In both the cases of SISO and
MIMO plants the speed of the transients depends
on the numerator polynomials of the RPTF-s,
which may be in some degree of freedom freely
chosen. For MIMO plants the applied decoupling
simplifies the process of design.

2. PARALLEL COMPENSATOR

In this section the idea of the parallel compensator
introduced in (Gessing, 2004) will be reminded.



Consider the linear plant described by the transfer
function (TF)

G(s) =
Y (s)

U(s)
=

L(s)

M(s)
(1)

where Y (s) and U(s) are the Laplace transforms
of the plant output and input, respectively, while
L(s) and M(s) are polynomials of m-th and n-
th degree, respectively, m < n. Assume that the
plant is stable, that is its poles pi, i = 1, 2, ..., n
have negative real parts i.e. Repi < 0.

The parallel compensator is described by the TF

Gp(s) =
Y p(s)

U(s)
= Gr(s) − G(s) (2)

and its idea, as it was noted in (Gessing, 2004) is
similar to that of the Smith predictor. Here Y p(s)
is the Laplace transform of the output yp of the
compensator, while Gr(s) is the TF which will be
appropriately chosen.

Fig. 1. The equivalent block diagrams of the
system with parallel compensator.

Note that in the proposed structure shown in Fig.
1a the TF Gr(s) of the replacement plant outlined
by the dashed line is described by

Y r(s)

U(s)
= G(s) + Gp(s) = Gr(s) (3)

Of course, to implement a closed loop (CL) stable
system with the reference signal r determining the
demanded output y the TF Gr(s) should fulfill
some demands.

In the case of regulation when r = const the error
in a constant steady state is mainly interesting,
therefore for some constant steady state values it
should be

yp = 0, yr = y, er = r − yr = r − y (4)

The latter condition will be fulfilled if

Gr(0) = G(0) (5)

3. APPROXIMATE DESCRIPTION OF THE
CL SYSTEM

The equivalent block diagram of the system from
Fig. 1a is shown in Fig. 1b. Note that the part of

the system outlined by the dashed line contains
the elements of the regulator based on the parallel
compensator. Assuming that the CL system is sta-
ble and has appropriate phase margin under high
gain k, the regulator in the system is described by
the following TF C(s)

C(s) =
U(s)

E(s)
=

k

1 + kGp(s)
≈

1

Gp(s)
(6)

Note that if the TF Gr(s) has the relative degree
equal to one, then the TF (3) of the regulator has
the degree of numerator polynomial greater by one
from that of the denominator. Thus the regulator
(6) has the derivative part.

Accounting (6) we obtain the following formula
describing the CL system

Y (s)

R(s)
=

G(s)/Gp(s)

1+G(s)/Gp(s)
=

G(s)

Gp(s)+G(s)
=

G(s)

Gr(s)
(7)

The formula (7) may be used for designing the TF
Gr(s). One such a possibility will be discussed the
next section.

4. DESIGN OF THE REPLACEMENT PLANT
TRANSFER FUNCTION

Denote by
Gr(s) =

Lr(s)

Mr(s)
(8)

a stable replacement plant (3) with minimum
phase zeros. Thus the polynomials Lr(s) and
Mr(s) are Hurwitz polynomials. One way of de-
signing Gr(s) is to choose

Mr(s) = M(s) (9)

Lr(s) = l(1 + sT )n−1, l = L(0) (10)

so the condition (5) is fulfilled.

Denote by ϕr(ω) the phase of the frequency re-
sponse Gr(jω) = Lr(jω)/M(jω). Let the phase
ϕr(ω) fulfills the inequality

max
0≤ω<∞

|ϕr(ω)| < ϕ (11)

where ϕ is a given positive value of the phase. It
may be for instance ϕ = 90◦, then Gr(s) is strictly
positive real (SPR) TF for which ReGr(jω >
0). For our goal it may be the weaker demand:
ϕ = 130◦. The later determines the absolute value
of the phase of the vector on the Nyquist plane
attached in the origin, which is tangent to the so
called Mc circle for Mc = 1.3. The circle Mc = 1.3
determines the locus of the points on the Nyquist
plane for which the maximal absolute value of

Mc = max
0≤ω<∞

∣∣∣∣ kGr(jω)

1 + kGr(jω)

∣∣∣∣ (12)

is equal to 1.3. The value Mc = 1.3 is used as
the recommended value of a magnitude during
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