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Abstract: This paper presents a method for planning optimal control for nonlinear
processes by using discrete optimization algorithms. The principal concept is to
analyze the autonomous dynamics and to use its properties in the design of
an optimal state-space trajectory. The analysis is performed in a multi-stage
procedure, based on a proper decomposition of an operational subspace into a
set of segments. The arrangement of these segments is transformed into a flow
graph structure. Flow values characterize the cost of driving the operational point
between two adjacent nodes. A discrete optimization algorithm is used to search
the state-space graph for an optimal path. ©IFAC 2007
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1. INTRODUCTION

There are two main groups of methods that can
be used for solving nonlinear control problems
for dynamical systems. Classical control analyt-
ical methods, which rely on finding a local (or
global) minimum of an assumed control cost func-
tion. Known analytical tools like the calculus of
variation, the Euler-Lagrange equation and the
Hamilton-Pontryagin criterion certain necessary
conditions. There is a sufficient condition for the
existence of a minimum (Lewis 1992) resulting
from the Bellman’s approach. However, the meth-
ods mentioned above cannot be directly used in
the case of dynamical processes that are described
by the models which contain hard nonlinearities
(the lack of derivatives of functions in some points
of its domain). The same restriction concerns the
cost function. Another disadvantage of classical

methods is the complexity of the necessary sym-
bolic transformations.

There are many numerical techniques approaching
the optimal control trajectory by iteratively com-
puting solutions of nonlinear two-point boundary-
value problems (Kirk 1970). However, these al-
gorithms (steepest descent, variation of extremes
or quasilinearization) require process description
by means of differentiable functions without con-
strains imposed on control and state variables.
Another bunch of numerical procedures can be
applied when differential equations are approxi-
mated by difference equations. After discretiza-
tion some effective nonlinear programming algo-
rithms (gradient or nongradient) can be applied,
such as the conjugate direction methods (Nash
1996), (Bertsekas 2000). The main disadvantage of
these methods lies in converging to local minima



and in the assumption that the feasibility region of
solution is continuous, whereas the control signals
in practical problems can be for instance limited
to certain ON-OFF positions. Discrete dynamics
programming (Bertsekas 2005) avoids the diffi-
culties mentioned above, but falls into the curse
of dimensionality, characteristic for the Bellman’s
approach leading to drastic increase of the com-
putation time. This paper proposes an alterna-
tive technique for finding solution of the following
minimum control-effort problem. Let us consider
a nonlinear system of an n-th order having m
controls described by the state equations

ẋ(t) = f(x(t),u(t), t) (1)

where f is a vector function defining the system
dynamics, x ∈ Rn is a state, u ∈ Rm is a control
signal and t means time. The variables x and u
can be constrained to admissible regions X and
U , respectively: the set X = P\Z, where P is a
limited operational subspace of Rn and Z stands
for a forbidden zone.

Our objective is to find the optimal control
u∗(t) ∈ U along with the corresponding state
trajectory E∗ = E(u∗(t)) ∈ X , which transits
the dynamical system (1) from its initial state
x(0) = x0 to a specified target state x(T ) = xk

and minimizes the cost functional

J(E(u)) =

T∫

0

(
m∑

i=1

βi|ui(t)|)dt (2)

where βi, i = 1, . . . ,m are nonnegative weights
factors and T is transmition time resulting from
the optimal control procedure.

Our main objective is to present a formal descrip-
tion of the proposed algorithm along with two
simple applications.

2. FORMAL DESCRIPTION

We start the formal description by separating au-
tonomous and forced components in the dynamic
model (1) of the analyzed process:

ẋ = ẋx + ẋu = fx(x, t) + fu(x,u, t) (3)

where fu(x, 0, t) = 0 and
xx,xu are two fictitious state "contributors",
ẋx = fx(x, t) represents autonomous dynamics,
ẋu = fu(x,u, t) portrays forced dynamics.

The above decomposition makes a principal stage
of the following analysis of the process au-
tonomous dynamics. The main idea of the pre-
sented method consists in an apt utilization of

the autonomous dynamic’s properties in finding
the optimal control strategy in terms of (2).

Let us introduce some terminology necessary for
further development.

Definition 1. System’s trajectory E(u)
Any sequence of states defined in the state-space
of a given dynamical system with a feasible control
input set U is said to be a system’s trajectory or
a trajectory of operational points of the space.

Definition 2. Operational subspace P
A bounded subset P of the state-space in the form
of a hypercube in Rn, which is taken into account
while seeking an optimal trajectory is said to be
an operational subspace.

Definition 3. Forbidden zone Z
A subset Z of P prohibited for operational points
is referred to as a forbidden zone. This means that
the sought optimal trajectory cannot enter it.

Definition 4. Transition vector Λ
A transition vector Λ is an ordered set of two
elements {x0, xk}

Λ = {(x0, xk) : x0, xk ∈ E(u)} (4)

where x0 is the first element and xk is the last
element of the sought optimal trajectory.

Definition 5. Cost function J(E(u)) of a tra-
jectory and control
Let A be a set of all trajectories belonging to a
given operational subspace P . A function of the
class A → R which assigns a real value to each
trajectory E ∈ A is said to be a cost function
J(E(u)) of this trajectory.

Definition 6. Optimal trajectory E∗

Let Ξ ⊂ A be the subset of all possible trajectories
which start at a given point x0 and terminate at
xk. We say that a trajectory E∗ is optimal if it
satisfies the following conditions:

∀E∈ΞJ(E) ≥ J(E∗) (5)

and

∀x∈E∗x ∈ P \ Z (6)

Definition 7. Segmentation of an operational
subspace
Segmentation of a given operational subspace P
into a set of Ns segments is defined as follows:

P =
Ns⋃

j=1

Φj (7)
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