

Cite this article as: Rare Metal Materials and Engineering, 2017, 46(2): 0301-0306.

Fabrication and Cyclic Oxidation of Y₂O₃/CeO₂-Modified Low **Temperature Aluminide Coatings**

Zhang Haijun, Sun Jianfeng

Heilongjiang University of Science and Technology, Harbin 150022, China

Abstract: With Y2O3/CeO2 powder, instead of part of Al2O3, acting as filler, Y2O3/CeO2-modified aluminide coatings were produced on Ni based using a conventional pack-cementation method at 600 °C for 10 h. For comparison, a normal aluminide coating was also produced using pure Al₂O₃ acting as filler. Effect of Y₂O₃/CeO₂ in the pack on the alumina phase transformation and cyclic oxidation resistance in air at 1000 °C was investigated. The results indicate that Y₂O₃ and CeO₂ have different effects on $\theta \alpha$ phase transformation: Y₂O₃ suppresses the growth of the θ -alumina but CeO₂ promotes the θ - α phase transformation. However, compared to the normal aluminide coating, the addition of Y2O3/CeO2 significantly improves the cyclic oxidation resistance due to the formation of adherent alumina scale, especially the later. The effects of Y2O3/CeO2 on alumina phase transformation and cyclic oxidation resistance were discussed.

Key words: aluminide; cyclic oxidation; reactive element effect

The addition of reactive element (RE), such as Y, Ce, and La, or reactive-element oxide (REO), such as Y_2O_3 , CeO₂, La₂O₃, can improve the oxidation resistance of alloys, which was referred to as "reactive element effect" (REE)^[1]. Various theories to elucidate the REE have been put forward but still are in dispute^[2]. A large number of research has developed this effect of REO addition into the aluminide coating through depositing on the surface of alloy by various techniques before aluminization^[3-6]. However, these methods not only complicated their technologic steps, but also added to the difficulty in preparation of these modified coatings. It was well known that the filler Al₂O₃ particles could be entrapped into the outer layer of aluminide coating^[7,8]. By considering this phenomenon, Zhou et al.^[9] developed a much simpler technologic process to add Y₂O₃ particles into the aluminide coatings by the Y₂O₃ microparticles instead of part of Al₂O₃ as filler at 1000 °C. Zhao^[10] further investigated the effect of Y2O3 content in the filler on microstructure and hot corrosion resistance of aluminide coating produced at 1050 °C. However, such a high temperature treatment inevitably restrict the applications of aluminide coatings due to grain growth of the substrate materials, which has a detrimental effect on the mechanical properties of workpieces. Therefore, reducing pack cementation temperature is required for the widespread application of the aluminide coatings^[4-6]. Recently, Sun et al^[11] successfully added CeO₂ nanoparticles into the chromizing coatings using the same methods at low temperature. Meng et al ^[12] further found that the chromizing coating using part of CeO₂ as filler exhibits better oxidation resistance than the chromizing coatings using pure Al₂O₃/CeO₂ as filler. The authors work^[13] also indicated that Y₂O₃/CeO₂ can be added into aluminide coating using part of Y2O3/CeO2 as filler at 600 °C. Oxidation results showed that Y₂O₃/CeO₂ significantly enhanced the isothermal oxidation resistance of aluminide coatings. Based on these studies, the objective of the present work was to analyze the effect of Y₂O₃/CeO₂ on alumina phase transformation and cyclic oxidation resistance of aluminide coatings.

1 Experiment

Corresponding author: Zhang Haijun, Ph. D., Associate Professor, College of Materials Science and Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China, Tel: 0086-451-88036740, E-mail: kjdx1@163.com

ARTICLE

Received date: February 14, 2016

Foundation item: Scientific Research Fund of Heilongjiang Provincial Education Department (11531319)

Copyright © 2017, Northwest Institute for Nonferrous Metal Research. Published by Elsevier BV. All rights reserved.

Samples with dimensions of 15 mm×10 mm×2 mm were cut from an electrolytic nickel plate. They were ground to a final 800# SiC paper. After ultrasonically cleaning in acetone, they were aluminized using conventional pack cementation in a homogeneous mixture of 75 wt%Al powder as master alloy source, 20 wt% inert filler (namely 100 wt% Al₂O₃, 50 wt% Y₂O₃ (40~50 nm) + 50 wt% Al₂O₃ and 50 wt% CeO₂ (40~50 nm) +50 wt% Al₂O₃, respectively) and 5 wt% NH₄Cl as activator in a pure Ar atmosphere at 800 °C for 7 h. Afterwards, the samples were brushed, cleaned in bubbling distilled water for 30 min and then ultrasonically cleaned in acetone to remove any loosely embedded pack particles. The details and processing parameters were reported in Ref.[13].

The cyclic oxidation at 1000 °C up to 40 h in air was performed by automatically lifting samples from the hot zone of a vertical furnace after an 1 h exposure period followed with 10 min cooling to room temperature. Mass changes of the oxidized specimens were measured after fixed time intervals using a balance with 0.01 mg sensitivity. The composition and phases of the various aluminide coatings before and after oxidation was investigated using Camscan MX2600FE type scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and D/Max-2500pc type X-ray diffraction (XRD). Electroless Ni-plating was plated on the surface of the oxidized specimens to prevent the spallation of the scales for observing cross-sections.

2 Results

2.1 Microstructure

After pack cementation at 600 °C for 10 h, the aluminide coatings were prepared. Previous results indicated that the addition of Y_2O_3 or CeO_2 in the pack significantly retarded the grain growth of the aluminide coating^[13]. The average Al concentration in the surface zone (<4 µm: the profile depth of electron beam) is close to 41 wt% for the three aluminide coatings on a basis of EDAX area analysis. XRD results also reveal that all aluminide coatings contain only δ -Ni₂Al₃ phase, as seen in Fig.1.

Fig.2 corresponding shows the cross-sectional morphologies of δ -Ni₂Al₃ coatings developed on Ni using different filler. Clearly, the aluminide coatings using part of Y_2O_3 or CeO_2 as filler is more compact than the aluminide coating using pure Al₂O₃ as filler even all have the same thickness about 50 µm. From Fig.2a, it can be found that there is a $2 \sim 3 \mu m$ interdiffusion zone (as arrowed). However, for aluminide coatings using Y₂O₃/CeO₂ as filler, the thickness of interdiffusion zone is significantly decreased, especially the later. No bright Y_2O_3/CeO_2 -oxides particles can be found from Fig.2b and Fig.2c. The result is contrary to Zhou^[9] but the same as other works^[10-12] using finer Y₂O₃/CeO₂ particles as filler.

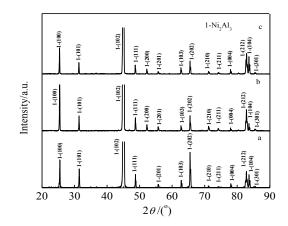


Fig.1 XRD patterns of aluminide coatings using different filler (a-Al₂O₃, b-Al₂O₃+Y₂O₃, c-Al₂O₃+CeO₂)

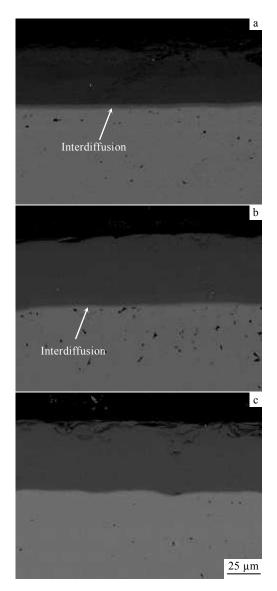


Fig.2 Cross sectional morphologies of aluminide coatings using different filler: (a) Al₂O₃, (b) Al₂O₃+Y₂O₃, and (c) Al₂O₃+ CeO₂

Download English Version:

https://daneshyari.com/en/article/7210466

Download Persian Version:

https://daneshyari.com/article/7210466

Daneshyari.com