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Abstract: A pursuit-evasion differential game with bounded controls and prescribed duration
is considered. The evader has a finite number of possible dynamics, while the dynamics of the
pursuer is fixed. The evader can change its dynamics several times during the game. The pursuer
knows all possible evader dynamics, but not the actual one. The optimal pursuer feedback
strategy in this game is obtained. This strategy is robust with respect to the order of the evader
dynamics during the game, as well as instants of changing the dynamics. For this strategy, the
capture zone is constructed. An illustrative example is presented.
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1. INTRODUCTION

During several recent decades, control problems for hybrid
dynamics systems have attracted an attention of many
researchers. In the open literature, devoted to this topic,
mostly control problems with a single decision maker
are studied (see e.g. Riedinger et al. (2003); Sussmann
(1999); Utkin (1983) and references therein), while control
problems with two and more decision makers (games
with hybrid dynamics) are investigated much less. In
Grigorenko (1991), a differential game of pursuit of a single
evader by a group of pursuers is considered. The structure
of the game dynamics is changed by the evader once
during the game. Sufficient conditions for the existence
of the game solution are obtained. In Mitchell et al.
(2005), the reachability sets for pursuit-evasion games with
nonlinear hybrid dynamics are numerically constructed
by using solutions of time-dependent Hamilton-Jacobi
equations. In Gao et al. (2007), a general pursuit-evasion
differential game with hybrid dynamics is studied by using
the viability theory and non-smooth analysis.

The pursuit-evasion game, considered in this paper, is
a mathematical model of an interception engagement
between two moving vehicles, an interceptor P (pursuer)
and a target E (evader). The dynamics of each vehicle
is approximated by a first-order transfer function with
time constants τp and τe, respectively. Moreover, it is
assumed that the lateral acceleration commands of the
pursuer and the evader are bounded by the constants
amax

p and amax
e , respectively. Thus, the dynamics of each
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player is completely described by the respective vector
ωi = (amax

i , τi), i = p, e. The cost function of the game
is the distance of closest approach (miss distance). The
fixed dynamics version of this game (prescribed vectors
ωp and ωe) has been studied extensively in the open
literature, see Shinar (1981); Shima and Shinar (2002);
Gutman (2006). It was shown that this game has a saddle-
point solution in feedback strategies. The solution leads
to the decomposition of the game space into two regions
(singular and regular) of different optimal strategies. The
game space decomposition is completely determined by
the pair (ωp, ωe). This pair also determines the existence
or non-existence of a capture zone - the set of all initial
positions of the game for which the game value equals zero.

In Shinar et al. (2007), the pursuit of an evader with fixed
dynamics by a pursuer with hybrid dynamics is studied,
while in Shinar et al. (2009), the evasion from a pursuer
with fixed dynamics by an evader with hybrid dynamics
is analyzed. In these papers, it was established that the
optimal order of dynamics for the player with hybrid
dynamics is: from a smaller time constant to a larger one
in such a way that the player’s agility decreases. Moreover,
in each case, the optimal switch moment was derived in a
closed form. It is important to note that these moments
depend only upon the dynamic modes of the hybrid player.
The capture zone of the hybrid pursuer and the escape
zone of the hybrid evader also were constructed.

In the present paper, the case of fixed pursuer and hybrid
evader is treated but from the viewpoint of a pursuer. It
is assumed that the vector ωp is fixed, while the vector ωe

belongs to a given set Ωe , {ω1

e , ω
2

e , ..., ω
N
e }, switching

from one value to another any number of times during the



game. The choice of the evader dynamics and the switch
moments can be considered as additional elements of the
evader control, not known to the pursuer. Therefore, a
guaranteeing pursuer strategy has to be robust not only
with respect to the evader acceleration command, but also
with respect to the order of the evader dynamics during
the game, as well as the instants of changing the dynamics.

2. PROBLEM FORMULATION

2.1 Engagement Model

A planar engagement between two moving objects - an
interceptor (pursuer) and a target (evader) - is considered.
The schematic view of this engagement is shown in Fig.
1. The X axis of the coordinate system is aligned with
the initial line of sight. The origin is collocated with the
initial pursuer position. The points (xp, yp), (xe, ye) are
the current coordinates; Vp and Ve are the velocities and
ap, ae are the lateral accelerations of the pursuer and
the evader respectively; ϕp, ϕe are the respective angles
between the velocity vectors and the reference line of sight;
and y = ye − yp is the relative separation normal to the
initial line of sight.
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Fig. 1. Interception geometry

It is assumed that the dynamics of each object is expressed
by a first-order transfer function with the time constants
τp and τe, respectively. The velocities and the bounds
of the lateral acceleration commands of both objects are
constant.

If the aspect angles ϕp and ϕe are small during the en-
gagement then the linearized engagement model is (Shinar
(1981))

ẋ = Ax+ bu+ cv, x(0) = x0, (1)

where the state vector is x = (x1, x2, x3, x4)
T =

(y, ẏ, ae, ap)
T , the superscript T denotes the transposition,

A =







0 1 0 0
0 0 1 −1
0 0 −1/τe 0
0 0 0 −1/τp







, (2)

b = (0, 0, 0, amax

p /τp)
T , c = (0, 0, amax

e /τe, 0)T , (3)

x0 = (0, Ve sinϕe(0) − Vp sinϕp(0), 0, 0)T . (4)

The normalized lateral acceleration commands of the
evader v(t) and the pursuer u(t) satisfy the constraints

|v(t)| ≤ 1, |u(t)| ≤ 1, 0 ≤ t ≤ tf . (5)

It is supposed that the functions v(t), u(t) are measurable
on [0, tf ] and are bounded according to (5).

Remark 1. The angles ϕp and ϕe remain small in short
duration end-game with high velocities. This fact was
demonstrated by simulation (see e.g. Fig. 5 in Turetsky
and Glizer (2007)). The corresponding linearization is
widely used in the literature.

Remark 2. The engagement model (1)-(3) is completely
determined by two vectors ωe = (amax

e , τe) and ωp =
(amax

p , τp) called in the sequel the dynamic modes of the
evader and pursuer, respectively.

2.2 Hybrid Dynamics Game

It is assumed that the mode ωp in (1) – (3) is fixed, while
the evader has hybrid dynamics: the mode ωe is chosen by
the evader a finite number of times during the engagement
from the prescribed N -element set

Ωe = {ω1

e , ω
2

e , ..., ω
N
e }, ωi

e 6= ωj
e, i 6= j, N ≥ 1, (6)

where ωi
e = (amax

e,i , τe,i), i = 1, ..., N .

Consider the game with the dynamics (1), constraints (5)
and the performance index

J = |x1(tf )|. (7)

Note that (7) is the miss distance. The objective of
the pursuer is minimizing (7) and of the evader it is
maximizing (7), by means of feedback strategies u(t, x)
and v(t, x), respectively.

It is assumed that the vector ωp, the set Ωe and a current
engagement position x(t) are known to both players.
However, the pursuer has no information on a current
evader dynamic mode ωe. This game is called the Original
Hybrid Dynamics Game (OHDG). In this paper, the
optimal pursuer behavior in the OHDG is analyzed.

3. FIXED DYNAMICS GAME

If N = 1, the OHDG becomes a game with fixed dynamics
of both players. In the sequel, this game is called the
Original Fixed Dynamics Game (OFDG). It was solved
in Shinar (1981).

3.1 Zero-Effort Miss Distance

The solution of the OFDG is based on its scalarization by
introducing a new state variable

Z(t) = Z(t;ωe, ωp) = dT Φ(tf , t; τe, τp)x(t;ωe, ωp), (8)

where x(t;ωe, ωp) is the state vector of (1), Φ(tf , t; τe, τp) is
the transition matrix of the homogeneous system ẋ = Ax,
dT = (1, 0, 0, 0). The value of the function Z(t) has the
following physical interpretation. If u ≡ 0 and v ≡ 0 on
the interval [t, tf ], then the miss distance |x1(tf )| equals
|Z(t)|. Therefore, this function is called the zero-effort miss
distance (ZEM). It is given explicitly by

Z(t) = x1(t) + (tf − t)x2(t)+

τ2

e Ψ ((tf − t)/τe)x3(t) − τ2

p Ψ ((tf − t)/τp)x4(t), (9)

where Ψ(ξ) , exp(−ξ) + ξ − 1 > 0, ξ > 0. By introducing
a new independent variable (time-to-go) ϑ = tf − t and
using (9), it can be shown that the function of ϑ

Z̃(ϑ) = Z̃(ϑ;ωe, ωp) , Z(tf − ϑ;ωe, ωp) (10)
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