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Abstract: In previous work we have shown how a max-plus algebraic model can be derived
for cyclically operated high-throughput screening systems and how such a model can be used
to design a controller to handle unexpected deviations from the predetermined cyclic operation
during runtime. In this paper, we introduce an extension of this approach for high-throughput
screening systems containing multi-capacity resources, i.e., resources that can handle more than
one activity at the same time.
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1. INTRODUCTION

High-throughput screening (HTS) has become a standard
technology for drug discovery in pharmaceutical indus-
tries. HTS plants are fully automated systems that are
able to analyze thousands of biochemical compounds in a
very short time.

In high-throughput screening, a batch subsumes all work-
steps that are necessary to analyze one set of substances.
Such a set consists of up to 1536 substances, which are
aggregated on one microplate. Additional microplates may
be included in the batch to convey reagents or waste ma-
terial. An HTS plant involves a fixed set of resources per-
forming liquid handling, storage, reading, plate handling
and incubation steps. For comparison reasons the sequence
and the timing of activities that have to be performed on a
batch – the single batch time scheme – has to be identical
for all batches. Cyclic operation is therefore an important
requirement.

A method to determine globally optimal schedules for
cyclic systems, such as HTS systems, has been introduced
by Mayer and Raisch (2004). This approach is based
on discrete-event systems modeling, i.e., the system is
characterized by the occurrence of discrete changes or
events. More specifically, the model is given as a time
window precedence network. Using standard graph reduc-
tion methods, the complexity of this network can then be
reduced. The procedure ensures that at least one globally
optimal solution of the scheduling problem is retained.
Another important step in the proposed method is the
transformation of the resulting mixed integer non-linear
program (MINLP) into a mixed integer linear program
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(MILP). Although these steps decrease the complexity of
the problem significantly, it is still too complex to be solved
online. Therefore, the algorithm is carried out offline before
the execution of the HTS systems starts, i.e., it determines
a static schedule. Static schedules, though, do not perform
well when deviations from the predetermined cyclic scheme
occur during runtime.

However, using the predetermined static schedule it is
possible to develop a max-plus algebraic model of the HTS
system’s operation (Brunsch and Raisch, 2009). Based on
this model, a supervisor may be designed that generates
possible actions to be taken in case of unexpected devi-
ations from the cyclic scheme. Doing so, the supervisor
updates the schedule of the HTS plant and thus ensures
its continuous operation.

In this paper the max-plus algebraic modeling and con-
trol scheme is extended to HTS plants containing multi-
capacity resources, i.e., resources that can handle more
than one activity at the same time. Such resources are
contained in many high-throughput screening plants. One
of the most common multi-capacity resources in HTS
plants is the incubator, where the biochemical substances
are allowed to bind to or react (or fail to react) with each
other.

This paper is structured as follows. Section 2 briefly
describes the fundamentals of graph theory and max-plus
algebra. The specifications for high-throughput screening
systems are explained in Section 3. Using an illustrative
example it is explained how the constraints are merged
into a max-plus algebraic model of the HTS operation
and how multi-capacity resources can be incorporated into
the model. In Section 4, the max-plus algebraic control
scheme introduced by Li et al. (2007) is extended to HTS
systems with multi-capacity resources. Conclusions and
suggestions for future work are given in Section 5.



2. GRAPH THEORY AND MAX-PLUS ALGEBRA

2.1 Fundamentals of Graph Theory

A directed graph is a pair (V , E) where V is the set of
nodes or vertices, and E ⊆ V × V is a set of ordered
pairs of nodes, called edges or arcs. A weighted directed
graph is a directed graph with a real number (the weight)
wji ∈ R assigned to each arc (vi, vj) ∈ E . All weights of
the graph can be written as a matrix W ∈ R

n×n
max, with

Rmax = R∪{−∞} and n being the total number of nodes
in the graph. If no arc exists from node vi to node vj the
corresponding entry in the matrix W is set to −∞. The
pair (V , E) is then called the precedence graph of W . If
the weights wji ∈ Rmax represent times, the respective
weighted digraph will also be referred to as a time window
precedence network. Then, nodes represent events and arcs
represent minimum time offsets between the occurrence of
events.

2.2 Max-Plus Algebra

Max-plus algebra (e.g., Baccelli et al. (2001), Heidergott
et al. (2006)) is a powerful tool for the analysis of a
certain class of discrete-event systems and provides a
compact representation of such systems. It consists of two
operations, ⊕ and ⊗, on the set Rmax = R ∪ {−∞}. The
operations are defined by: ∀a, b ∈ Rmax:

a ⊕ b := max(a, b)
a ⊗ b :=a + b.

The operation ⊕ is called addition of the max-plus algebra,
the operation ⊗ is called multiplication of the max-plus
algebra. The neutral element of max-plus addition is −∞,
also denoted as ε. The neutral element of multiplication is
0, also denoted as e.

Addition of matrices in max-plus algebra for A, B ∈ R
n×m
max

is defined by
[A ⊕ B]ji = [A]ji ⊕ [B]ji.

Multiplication of max-plus matrices A ∈ R
n×l
max and B ∈

R
l×m
max is defined by

[A ⊗ B]ji =
l
⊕

k=1

([A]jk ⊗ [B]ki) = max
k=1,...,l

{[A]jk + [B]ki} .

Similar to conventional algebra, some standard properties
such as associativity, commutativity, and distributivity of
⊗ over ⊕ hold for max-plus algebra.

Systems with (cyclic) repetition of events can be repre-
sented in max-plus algebra by:

x(k) =
⊕

q

(Aq ⊗ x(k − q)) ⊕ B ⊗ u(k)

y(k) = C ⊗ x(k),
with k ∈ Z and q ∈ {N ∪ 0}, where the vectors u(k) and
y(k) contain the earliest time instants for the occurrence
of certain input and output events in the k-th cycle. The
elements of the matrix A0 represent the minimum time
offsets between events occurring in the same cycle, while
the matrices Aq with q > 0 refer to minimum time offsets
between events in previous cycles and events in the current
cycle. If matrix A0 is acyclic, i.e., its precedence graph does

not contain any circuits, the matrix A∗
0

= I⊕A0⊕A2

0
⊕ . . .

can be determined as the finite sum A∗
0

= I ⊕ A0 ⊕ A2

0
⊕

· · · ⊕ An−1

0
, where I is the identity matrix with respect

to max-plus algebra. In this case the implicit recurrence
relation can be rewritten in an explicit form:

x(k) =
⊕

q

(A∗
0
⊗ Aq ⊗ x(k − q)) ⊕ A∗

0
⊗ B ⊗ u(k)

y(k) = C ⊗ x(k),

with k ∈ Z and q ∈ N.

3. MAX-PLUS MODEL OF HTS SYSTEMS

The specific operation the user wants to run determines
requirements for the single batch time scheme. It consists
of imax activities which are executed on m resources.
Thus, each activity i is assigned to a specific resource
Ji ∈ {1, . . . , m}. During the execution of activity i the
respective resource Ji is said to be occupied. As activities
of a batch may overlap in time, it is possible that a
batch occupies two resources at the same time. This is,
for example, the case during transfer of a microplate from
one resource to another one.

The minimal requirements for the single batch time scheme
can be modeled using time window precedence networks.
To do so, each activity i is described by three different
kinds of events, i.e., start events denoted by oi, release
events denoted by ri, and transfer events. The time win-
dow precedence network of a simple example is given in
Fig. 1.
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Fig. 1. Time window precedence network to describe
requirements for a single batch time scheme.

Often scheduling problems are illustrated by Gantt charts.
The Gantt chart of our example is given in Fig. 2. It can
be seen that the operation contains four activities, which
are executed on a total of three resources. While Reader
and Pipettor are single-capacity resources, Incubator is of
capacity three. That means that the resource Incubator
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Fig. 2. Gantt chart of the single batch time scheme

can mount a total of three microplates at the same time.
Usually Incubators are of a much higher capacity. For
simplicity and illustrative reasons, however, we will assume
the rather small capacity of three in our running example.

In general, a multi-capacity resource with capacity cap = ξ
can handle ξ activities concurrently. These concurrent
operations are executed independently from one another.
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