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Abstract: Finite-Time stability of Linear Time Invariant systems with matched perturbations
using dynamic output feedback is achieved under the assumptions of well-defined relative
degree and a known bound of the perturbations. The approach is based on high order sliding
modes, using global controllers and differentiator. A separation criteria that allows to detect
the convergence of the differentiator and posterior gain adaptation is presented. Analysis of the
performance under noise and sampling is presented.
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1. INTRODUCTION

Motivation. Linear Time Invariant (LTI) systems are the
class of systems where the most extensive research has
been done, there exists a wide arsenal of tools to accom-
plish almost any desired control task. However, in real ap-
plications, to only consider a simple LTI model for control
design automatically implies the need for robustness of
the designed controller against unaccounted nonlinearities
and perturbations. This way, it is clear that the simpler
the model we have chosen the more robust the designed
controller must be.

Sliding Mode (SM) Control is a technique that allows
the design of robust, or better yet insensitive, controllers
against matched perturbations Utkin (1992). In addition,
it also features exact finite-time convergence Utkin (1992).
This last property certainly is a useful one for controllers
in Hybrid or Switching systems, because it can provide
the exact convergence during dwell times, eliminating any
error accumulation during successive switchings. Therefore
it is enough to design a finite-time exact controller for each
“operation mode”, suppressing the hybrid nature of the
problem and simplifying the control design.

Antecedents. Some results concerning finite-time stability
of LTI systems can be found, for example, in Bhat and
Bernstein (2000, 2005). However, in those results uncer-
tainty is never considered and the whole state is assumed
available for feedback. High Order SM (HOSM) controllers
as finite-time universal controllers for uncertain SISO
systems were introduced in Levant (2001). The design
methodology is only based on the knowledge of the relative
degree of the output and some bounds on the dynamic
system. Results concerning the extension to multi-input
case with Second Order SM, assuming full state informa-
tion and bounded matched perturbations, can be found on
Bartolini et al. (2000) where the authors obtain asymptotic
stability of the origin. In Edwards et al. (2008), an output-

based Second Order SM controller is presented for MIMO
LTI systems with matched perturbations satisfying

• bounded-input bounded-state for both perturbations
and control input,

• the perturbation and its first derivative are bounded
by a known constant,

• well-defined relative degree,
• stable invariant zeroes.

Using a step-by-step Second Order SM algorithm for state
observation, the authors obtain asymptotic stability of
the origin. In spite of its recent theoretic development,
HOSM controllers have found numerous applications, e.g.
see Kunusch et al. (2009); Brambilla et al. (2008); Shtessel
et al. (2007); Pisano and Usai (2004) for recent ones.

Main Contributions. We make use of global HOSM con-
trollers, recently introduced in Levant and Michael (2008),
to obtain global finite-time convergent output controllers
for LTI systems with well-defined relative degree, consid-
ering a wider class of matched perturbations. The use
of arbitrary order HOSM controllers allow us to improve
the precision of the implemented controllers with respect
to sampling and noise. A separation criteria to detect
the convergence of the differentiator is presented allowing
to turn-on the controller once all the estimation of the
derivatives have converged. This same criteria is used to
adapt the differentiator gain to obtain globality and better
performance.

2. PROBLEM FORMULATION

Consider the system
ẋ = Ax+B[u+ w(t)]
y = Cx

(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rm, w ∈ Rm are the
state, control input, measured output, unknown input
(perturbation) signals, respectively. We assume that only



the output y(t) is available for feedback and that the
unknown input belong to the class ‖w(t)‖ ≤W+, withW+

a known constant. For the sake of clarity on the exposition
we will assume that the system has “well-defined relative
degree”, to be introduced later.

3. DIFFERENTIATOR ANALYSIS

3.1 Differentiator properties

Throughout this paper we will assume that all the required
derivatives are available in real time for feedback by means
of real-time exact robust differentiators Levant (2003). Let
f(t) ∈ R1 be a function to be differentiated. Then the k-th
order differentiator takes the form

ż0 = v0 = −λkL
1

k+1 |z0 − f |
k

k+1 sign(z0 − f) + z1,

ż1 = v1 = −λk−1L
1
k |z1 − v0|

k−1
k sign(z1 − v0) + z2,

... (2)

żk−1 = vk−1 = −λ1L
1
2 |zk−1 − vk−2|

1
2 sign(zk−1 − vk−2) +

+zk,

żk =−λ0L sign(zk − vk−1).

where zi is the estimation of the true signal f (i)(t). The
differentiator ensures finite-time exact estimation in ideal
conditions (no noise nor sampling) provided that L is an a-
priory known upper bound for |f (k+1)| and the parametric
sequence {λi}, i = 0, 1, . . . , k is chosen appropriately. In
particular, the parameters λ0 = 1.1, λ1 = 1.5, λ2 = 2,
λ3 = 3, λ4 = 5, λ5 = 8 are enough for the construction
of differentiators up to the 5-th order. However, since the
exact estimates required to construct the control signal are
only available after a finite time, the more rational solution
is first to wait until the finite-time exact estimate of the
derivatives is ready and then to turn on the controller.
But, when has the estimation of the HOSM differentiator
converged? This question is answered by the following
theorem
Theorem 1. Consider the HOSM differentiator (2) of order
k with f(t) ∈ R1 is the signal to be differentiated.
Assume that {λ0, . . . , λk} were properly chosen and the
differentiator provides for the finite-time estimation of the
derivatives in ideal conditions. Let

f(t) = f0(t) + η(t), |f (k+1)
0 (t)| < L, |η(t)| ≤ ε,

where f0(t) is an unknown basic signal and η(t) is a
Lebesgue-measurable noise. Suppose also that f(t) is sam-
pled with the time step τ > 0, and ε ≤ kεLξk+1, τ ≤ kτξ,
with ξ, kε and kτ some positive constants. Then there
exists positive constants γ0, γ1, . . . , γk and γt such that
that if the inequality

|z0 − f0(t)| ≤ γ0Lξ
k+1 (3)

holds during the time interval γtξ then also

|zi − f (i)
0 (t)| ≤ γiLξk−i+1, i = 1, 2, ...k (4)

hold, and moreover, starting from that moment inequali-
ties (3), (4) are kept.

Remark. Notice that in any case the accuracies (3) and
(4) are obtained after a finite transient time independently
of ξ. In particular, exact estimations are obtained in the

limit case ξ = 0, i.e. no noise and continuous sampling,
Levant (2003).

Proof. Denote σi := (zi − f (i)
0 )/L, σ := [σ0, · · · , σk]T .

Subtracting f (i+1)
0 from the both sides of the equation on

zi of (2) and dividing by L, obtain in example for the first
equation

ż0 − ḟ0 =−λkL
1

k+1 |z0 − f0 − η|
k

k+1 sign(z0 − f0 − η) +

+ z1 − ḟ0
since z0 − f0 = Lσ0 and z1 − ḟ0 = Lσ1, then

Lσ̇0 =−λkL
1

k+1L
k

k+1 |σ0 − η/L|
k

k+1 sign(σ0 − η/L) + Lσ1

and repeating the same procedure, obtain the differential
inclusion

σ̇0 = −λk |σ0 − η(t)/L|
k

k+1 sign(σ0 − η(t)/L) + σ1,

σ̇1 = −λk−1 |σ1 − σ̇0|
k−1

k sign(σ1 − σ̇0) + σ2,

. . . (5)

σ̇k−1 = −λ1 |σk−1 − σ̇k−2|
1
2 sign(σk−1 − σ̇k−2) + σk,

σ̇k ∈ −λ0 sign(σk − σ̇k−1 ) + [−1, 1].
where the last line of the inclusion is obtained due to
żk − f (k+1)

0 = σ̇kL and f
(k+1)
0 ∈ [−L,L].

The derivatives on the right-hand side of the last equations
can be excluded in the following way. For the first equation
η/L ∈ [−kεξk+1, kεξ

k+1]. From the first equation we can
obtain that

|σ1 − σ̇0| = λk |σ0 − η/L|
k

k+1

so λk−1 |σ1 − σ̇0|
k−1

k ≤ λkλk−1 |σ1 + [, ]|
k−1
k+1 . Reasoning in

the same way, we can obtain that

λk−j |σj − σ̇j−1|
k−j

k ≤ λ̃k−j |σ1 + [, ]|
k−j
k+1

and result in the following non-recursive form

σ̇0 ∈ −λ̃k
∣∣σ0 + [−kεξk+1, kεξ

k+1]
∣∣ k

k+1

× sign(σ0 + [−kεξk+1, kεξ
k+1]) + σ1,

σ̇1 ∈ −λ̃k−1

∣∣σ0 + [−kεξk+1, kεξ
k+1]

∣∣ k−1
k+1

× sign(σ0 + [−kεξk+1, kεξ
k+1]) + σ2,

. . . (6)

σ̇k−1 ∈ −λ̃1

∣∣σ0 + [−kεξk+1, kεξ
k+1]

∣∣ 1
k+1

× sign(σ0 + [−kεξk+1, kεξ
k+1]) + σk,

σ̇k ∈ −λ̃0 sign(σ0 + [−kεξk+1, kεξ
k+1]) + [−1, 1].

The right hand side of (6) is minimally enlarged in order
to provide for the convexity and upper-semicontinuity of
the obtained differential inclusion Filippov (1960). The
sampling of f corresponds to the time varying delay of
the right-hand side not exceeding kτξ. Denoting (6) by
�
σ ∈ Σ(σ(t), ξ), obtain that the system with sampling
corresponds to

�
σ ∈ Σ(σ(t− [0, kτξ]), ξ) (7)

Now we make use of the following lemma, proved in the
appendix,
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