
ORIGINAL ARTICLE

A new wavelet multigrid method for the numerical

solution of elliptic type differential equations

S.C. Shiralashetti *, M.H. Kantli, A.B. Deshi

Department of Mathematics, Karnatak University, Dharwad 580003, India

Received 2 August 2016; revised 12 November 2016; accepted 15 December 2016

KEYWORDS

Wavelet multigrid;

Daubechies filters;

Elliptic differential equa-

tions;

Condition number

Abstract In this paper, we present a new wavelet multigrid method for the numerical solution of

elliptic type differential equations based on Daubechies (db4) high pass and low pass filter coeffi-

cients with modified intergrid operators. The proposed method is the robust technique for faster

convergence with less computational cost which is justified through the error analysis and condition

number of a system in comparison with integrated-RBF technique based on Galerkin formulation

(Mai-Duy and Tran-Cong, 2009) and finite difference method. Some of the illustrative problems are

presented to demonstrate the attractiveness of the proposed technique.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The mathematical modeling of engineering problems usually
leads to sets of differential equations and their boundary con-
ditions. To pursue solutions of differential equations, for most
of the cases, it is necessary to employ discretization methods to

reduce the differential equations into system of algebraic equa-
tions. System of algebraic equations is related to many prob-
lems arising in science and engineering, as well as with

applications of mathematics to the social sciences and the
quantitative study of business and economic problems. Direct
methods are used to solve a linear system of N equations with

N unknowns. Direct methods are theoretically producing the
exact solution to the system in a finite number of steps. In
practice, of course, the solution obtained will be polluted by
the round-off error that is involved with the arithmetic being

used. To minimize such round-off error iterative methods are
infrequently used for solving linear systems. Since the time

required for sufficient accuracy exceeds that required for direct
methods. For large systems with a high quantity of 0 entries,
however, these methods are efficient in terms of both computer

storage and computation cost. This type of system stands up
frequently in science and engineering problems in the numeri-
cal solution of elliptic type of problems. The multigrid method

is largely applicable in increasing the efficiency of iterative
methods used to solve large system of algebraic equations [2].

The multigrid (MG) method is a well-founded numerical
method for solving sparse linear system of equations approxi-

mating differential equations. In the historical three decades
the development of effective iterative solvers for systems of
algebraic equations has been a significant research topic in

numerical analysis and computational science and engineering.
Nowadays it is recognized that multigrid iterative solvers are
highly efficient for elliptic boundary value problems and often

have optimal complexity. For a detailed treatment of multigrid
methods we refer to Hackbusch [3]. An introduction of multi-
grid methods is found in Wesseling, Briggs and Trottenberg
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et al. [4–6]. Griebel and Knapek [7] used matrix-dependent
interpolations, where the coarse grid operator is determined
to be a Schur complement using a Galerkin approach. Ghaffar

et al. [8–10] used the multigrid method for the solution of
Helmholtz equation. However, when met by certain problems,
the standard multigrid procedure converges slowly with larger

computational time, whereas wavelet multigrid based methods
reduce system of equations into well-conditioned with faster
convergence in lesser computational cost [11].

The mathematical theory of wavelets is more than 25 years,
yet already wavelets have become an important tool in many
areas, such as image processing and time series analysis. In
recent years, wavelet analysis is fast extensive kindness in the

numerical solution of elliptic type of problems. The smooth
orthogonal basis is obtained by the dilation and shift of a sin-
gle special function, called ‘‘mother wavelet’’. Recently, many

authors (De Leon [11] and Bujurke et al. [12]) have worked on
wavelet multigrid methods. These methods use a choice of the
filter operators obtained from wavelets to define the prolonga-

tion and restriction operators. Avudainayagam and Vani [13]
used wavelet-based interpolation and restriction operators
for their multigrid approaches, and Vasilyev and Kevlahan

[14] applied a wavelet-collocation-based multigrid method
for elliptic problems. Shiralashetti et al. [15] proposed the
new wavelet based Full-approximation scheme for the numer-
ical solution of non-linear elliptic partial differential equations.

This paper outspreads the new approach of a new wavelet
multigrid method (NWMG) to solve elliptic differential equa-
tions in which we obtained well-conditioned system by defining

the condition number in comparison with [1]. Thus, the pro-
posed method can be applied to a wide range of science and
engineering problems.

The organization of this paper is as follows. In Section 2,
Daubechies wavelets and wavelet multigrid operators are given.
The method of solution is discussed in Section 3. Section 4

presents numerical examples and results. Finally, conclusions
of the proposed technique are discussed in Section 5.

2. Daubechies wavelets

A major problem in the growth of wavelets during the 1980s
was the search for a multiresolution analysis where the scaling
function was compactly supported and continuous. As already

we know that, the Haar multiresolution analysis is generated
by a compactly supported scaling function but it is not contin-
uous. The B-splines are continuous and compactly supported

but fail to form an orthonormal basis. A family of multireso-
lution analysis was generated by scaling functions, which are
both compactly supported and continuous. This multiresolu-

tion analysis was first constructed by Daubechies [16,17], that
created great eagerness among mathematicians’ and scientists’
performance research in the area of wavelets.

2.1. Wavelet multigrid (WMG) operators

The matrix formulation of the discrete signals and discrete
wavelet transforms (DWT) plays an important part in the

wavelet method. This is highly expedient and informative, par-
ticularly for the numerical computations. As we already know
about the DWT matrix and its applications in the wavelet

method, it is given in [9] as,
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p are the high pass filter coefficients.

Using this matrix authors used restriction and prolongation

operators W and WT respectively given in Section 3.2, alike to

multigrid operators.

2.2. New wavelet multigrid (NWMG) operators

Here, we developed modified DWT matrix from DWT matrix
in which we have added rows and columns consecutively with

diagonal element as 1, which is built as,

W2 ¼

h0 0 h1 0 h2 0 h3 0 0 . . . 0 0

0 1 0 0 0 0 . . . . . . 0 0

g0 0 g1 0 g2 0 g3 0 0 . . . 0 0

0 0 0 1 0 0 0 0 . . . 0 0
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Using W2 matrix, we developed restriction and prolonga-

tion operators WP and WPT respectively alike to wavelet

multigrid operators given in Section 3.3.

3. Method of solutions

Consider the elliptic differential equation of the type one and
two dimensional problems, after discretizing the differential
equation through the finite difference method (FDM), we get

system of algebraic equations. Then it can be written in the
matrix form as

Au ¼ b ð3:1Þ

where A is 2J � 2J coefficient matrix, b is 2J � 1 matrix and u is

2J � 1 matrix to be determined, where J is the maximum level
of resolution. By solving Eq. (3.1) through the iterative

method, we get the approximate solution v of u. That is,

u ¼ eþ v ) v ¼ u� e, where e is (2J � 1 matrix) error to be
determined. In numerical analysis, the approximate solution
contains some error. Hence, there are many known approaches

to minimize the error. Some of them are Multigrid (MG),
Wavelet multigrid (WMG) and new wavelet multigrid
(NWMG) Methods. Now we are deliberating about the
method of solution of these mentioned methods as below.
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