
How to Capture Hybrid Systems Evolution

Into Slices of Parallel Hyperplanes

Tomas Dzetkulic ∗ Stefan Ratschan ∗∗

∗ Institute of Computer Science, Academy of Sciences of the Czech
Republic, Pod Vodarenskou vezi 2, 182 07 Prague 8, Czech Republic

(e-mail: dzetkulic@cs.cas.cz).
∗∗ Institute of Computer Science, Academy of Sciences of the Czech
Republic, Pod Vodarenskou vezi 2, 182 07 Prague 8, Czech Republic

(e-mail: ratschan@cs.cas.cz).

Abstract: In this paper we make a step towards an algorithm for the verification of hybrid
systems that, on the one hand allows very general inputs (e.g., with non-linear ordinary
differential equations), but on the other hand exploits the structure of those parts of the input
that represent special cases (e.g., clocks). We show how to compute slices of parallel hyperplanes
separating reachable from unreachable parts of the state space for a given abstraction of the
input system, and demonstrate the usefulness of such slices within an abstraction refinement
algorithm based on hyper-rectangles.

Keywords: verification, hybrid systems, timed automata

1. INTRODUCTION

Current algorithms for the verification of hybrid systems
range from one extreme of techniques that are quite
efficient but allow as input only a restricted problem class
(e.g., timed automata (Bengtsson and Yi, 2004)), to the
other extreme of algorithms that do allow as input a very
general problem class, but can hardly verify any examples
of the size occurring in practical applications (Ratschan
and She, 2007).

The key to arrive at algorithms that combine the advan-
tages of both approaches, lies in the exploitation of the
structure of parts of the input that represent special cases.

In this paper we use the observation that differential equal-
ities of the form ẋ = c (i.e., clocks of arbitrary speed) and
affine switching conditions often result in reach sets that
are to a certain extent bounded by hyperplanes. Hence we
use pairs of affine inequalities of the form blo ≤ ax ≤ bhi
(which we call slices) to separate the reachable from un-
reachable parts of the state space. However, in order to
allow general applicability, we design an algorithm for
generating such slices for hybrid systems that contain non-
linear ordinary differential equations, non-linear jumps,
etc.

The algorithm computes such slices for a given abstraction
of a hybrid system. It sets up a constraint that formalizes
reachability of states within an abstract state and over-
approximates the solution set of this constraint in the form
of a slice.

The presentation in the paper uses abstractions in the
form of hyper-rectangles (boxes), but also discusses the

⋆ The work on this paper has been supported by GAČR grants
201/08/J020 and 201/09/H057, and by the institutional research
plan AV0Z100300504 of the Czech Republic.

case where polyhedra are used instead. Moreover, we study
the use of such slices in safety verification methods based
on abstract refinement, especially constraint propagation
based abstraction refinement (Ratschan and She, 2007).
Extensive computational experiments show that in fact
the efficiency of these methods becomes much more robust
when using slices. Especially, the method can now verify
the up to now unsolved heating benchmark (Fehnker and
Ivančić, 2004).

In contrast to many algorithms in hybrid systems verifica-
tion, the correctness of our algorithms cannot be hampered
by floating-point rounding errors, since we do conservative
rounding throughout.

Concerning related work, Sankaranarayanan et al. (2008)
describe how to over-approximate the reach set of hybrid
systems using hyper-planes with given coefficients. Their
approach proved successful in forward computation of the
reach set, repeating flow pipe constructions with a fixed
time step. In contrast to that, in our approach we deduce
not only the constant of the hyper-plane but also their
coefficients. Moreover, we aim at improving abstractions,
and not at forward computation. Hence we do not employ
a potentially unbounded number of flow pipe constructions
with a fixed time step, but try to infer single slices as fast
as possible, allowing for efficient abstraction refinement.

Gulwani and Tiwari (2008) synthesize inductive invariants
of hybrid systems. Whenever such an inductive invariant
can be found, this verifies safety of the system. However,
the resulting search for an invariant can be expensive:
Gulwani and Tiwari (2008) use a translation to Boolean
satisfiability modulo bit vectors here. In contrast to that,
we concentrate on improvements of abstractions that can
be computed in negligible time.



The content of the paper is as follows: In Section 2 we
describe the problem of hybrid systems verification, in
Section 3 we describe how to formulate constraints that
over-approximate the reachable states, in Section 4 we
describe our over-all approach of computing slices from
the reachability constraint already used for computing
abstractions and we estimate complexity of such compu-
tation, in Section 5 we evaluate the method using some
computation experiments, and in Section 6 we conclude
the paper.

2. SAFETY VERIFICATION OF HYBRID SYSTEMS

In this section, we briefly recall our formalism for modeling
hybrid systems. It captures many relevant classes of hybrid
systems, and many other formalisms for hybrid systems in
the literature are special cases of it. We use a set S to
denote the modes of a hybrid system, where S is finite
and nonempty. I1, . . . , Ik ⊆ R are compact intervals over
which the continuous variables of a hybrid system range.
Φ denotes the state space of a hybrid system, i.e., Φ = S×
I1 × · · · × Ik.

Definition 1. A hybrid system H is a tuple
(Flow, Jump, Init, Unsafe), where Flow ⊆ Φ×R

k, Jump ⊆
Φ × Φ, Init ⊆ Φ, and Unsafe ⊆ Φ.

Informally speaking, the predicate Init specifies the initial
states of a hybrid system and Unsafe the set of unsafe
states that should not be reachable from an initial state.
The relation Flow specifies the possible continuous flow of
the system by relating states with corresponding deriva-
tives, and Jump specifies the possible discontinuous jumps
by relating each state to a successor state. Formally, the
behavior of H is defined as follows:

Definition 2. A flow of length l ≥ 0 in a mode s ∈ S is
a function r : [0, l] → Φ such that the projection of r to
its continuous part is differentiable and for all t ∈ [0, l],
the mode of r(t) is s. A trajectory of H is a sequence
of flows r0, . . . , rp of lengths l0, . . . , lp such that for all
i ∈ {0, . . . , p},

(i) if i > 0 then (ri−1(li−1), ri(0)) ∈ Jump, and
(ii) if li > 0 then (ri(t), ṙi(t)) ∈ Flow, for all t ∈ [0, li],

where ṙi is the derivative of the projection of ri to
its continuous component.

A (concrete) counterexample of a hybrid system H is a
trajectory r0, . . . , rp of H such that r0(0) ∈ Init and
rp(l) ∈ Unsafe, where l is the length of rp. H is safe if
it does not have a counterexample.

We use the following constraint language to describe hy-
brid systems and corresponding safety verification prob-
lems. The variable s ranges over S and the tuple of vari-
ables x = (x1, . . . , xk) ranges over I1×· · ·×Ik, respectively.
In addition, to denote the derivatives of x1, . . . , xk we use
the tuple of variables ẋ = (ẋ1, . . . , ẋk) that ranges over
R

k, 1 and to denote the targets of jumps, we use the
variable ŝ and the tuple of variables ̂x = (̂x1, . . . , ̂xk) that
range over S and I1 × · · · × Ik, respectively. Constraints
are arbitrary Boolean combinations of equalities and in-

1 The dot does not have any special meaning here; it is only used to
distinguish dotted from undotted variables.

equalities over terms that may contain function symbols,
like +, ×, exp, sin, and cos.

We assume in the remainder of the text that a hybrid
system is described by our constraint language. That
means, the flows of a hybrid system are given by a con-
straint Flow(s,x, ẋ), the jumps are given by a constraint
Jump(s,x,̂s, ̂x), and the initial and unsafe states are given
by constraints Init(s,x) and Unsafe(s,x), respectively.
To simplify notation, we do not distinguish between a
constraint and the set it represents.

Example 1. For illustrating the above definitions, consider
the following simple hybrid system with the modes m1,m2

and the continuous variables x1, x2, where x1 ranges over
the interval [0, 2] and x2 over [0, 1], i.e, Φ = {m1,m2} ×
[0, 2] × [0, 1].

The set of initial states are given by the constraint
Init(s, (x1, x2)) ≡ (s = m1 ∧ x1 = 0 ∧ x2 = 0).
The constraint Unsafe(s, (x1, x2)) ≡ (x1 > 1 ∧ x2 =
1) describes the set of unsafe states. The hybrid sys-
tem can switch modes from m1 to m2 if x2 ≥ 1, i.e.,
Jump(s, (x1, x2), s

′, (x′

1, x
′

2)) ≡ (s = m1 ∧ x2 ≥ 1 → s′ =
m2 ∧ x′

1 = x1 ∧ x′

2 = x2), The continuous behavior is
very simple: In mode m1, the values of the variables x1, x2

change with slope 1; in mode m2, the slope of variable x1

is 1 and variable x2 has slope −1. For a flow in mode m1,
the constraint 0 ≤ x1 ≤ 1 must hold and in mode m2,
1 ≤ x1 ≤ 2 must hold. The corresponding flow constraint
is Flow(s, (x1, x2), (ẋ1, ẋ2)) ≡ (s = m1 → ẋ1 = 1∧ẋ2 = 1∧
0 ≤ x1 ≤ 1)∧ (s = m2 → ẋ1 = 1∧ ẋ2 = −1∧ 1 ≤ x1 ≤ 2).
Note that the constraint 0 ≤ x1 ≤ 1 in Flow forces a
jump from mode m1 to m2 if x1 becomes 1. In general,
an invariant that has to hold in a mode can be modeled
by formulating a flow constraint that does not allow a
continuous behavior in certain regions.

Obviously, this hybrid system is safe.

A box abstraction of a hybrid system H is a set of non-
overlapping mode/box pairs (which we call abstract states)
with transitions between them, such that:

• every point on a counterexample of H is an element
of an abstract state

• whenever a counterexample moves from an abstract
state a1 to an abstract state a2 then there is a
corresponding transition a1 → a2 from a1 to a2 (it
is an easy, but rather technical exercise to formally
define ”moves from”).

We assume that we have a method for computing such a
box abstraction (Ratschan and She, 2007; Stursberg and
Kowalewski, 2000).

3. REACHABILITY CONSTRAINTS

Now we assume that we have a box abstraction for a given
hybrid system H, and present a constraint formalizing the
fact that a given point in the state space of H may lie on
a counterexample.

Observe that a point lies on a counterexample iff it is both
reachable from an initial state and leads to an unsafe state.
We will only formalize the first part of this condition, the
second part is dual. Details can be found in an earlier



Download English Version:

https://daneshyari.com/en/article/721102

Download Persian Version:

https://daneshyari.com/article/721102

Daneshyari.com

https://daneshyari.com/en/article/721102
https://daneshyari.com/article/721102
https://daneshyari.com

