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Abstract This paper presents a broad account of the lid-driven cavity flow problem which is an

important benchmark problem for the validation of CFD codes. A comprehensive review of the lit-

erature on the problem is presented and discussed, and available benchmarking results are com-

pared in tabulated format to provide a comprehensive source of validation data. In addition, the

problem was solved using a Graphical Processing Unit (GPU) accelerated in-house code developed

by the authors (https://github.com/TamerAbdelmigid/DrivenCavity_FVM.git), which solves the

steady Navier-Stokes equations, using the Finite Volume Method (FVM) in primitive variable for-

mulation. Case studies of steady incompressible flow in a 2D lid-driven square cavity are investi-

gated for 100 < Re < 5000. Detailed second order spatially accurate results are verified and

presented in a tabulated form for the sake of serving as benchmark dataset for future works on

the same problem. In the present work, collocated grid arrangement along with a uniform struc-

tured Cartesian grid up to 1301 � 1301 was used.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The driven cavity flow for over the past half a century served

as a benchmarking case for anyone to validate their techniques
and methods against, and over this period it has been studied
by hundreds of authors with nearly every numerical method

that exists, and yet only a handful of accurate and complete
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benchmark results are available in the literature. In the present
paper, all available data on the problem have been reviewed
and discussed in details. In addition, a GPU accelerated finite

volume code has been developed and utilized to produce accu-
rate benchmarking results using grids of resolution up to
1301 � 1301 cells. The purpose of the existing review was to

make some of the most important work done on the steady
state square driven cavity flow in the past 50 years available
in one source. However, it is worth mentioning that the pre-

sented review is by no means intended to be comprehensive.
The discussion proposed in the present paper concentrates

on the discretization technique, spatial accuracy, grid, and
Reynolds number range considered in the literature.

Though all the methods have been used to study the driven

cavity case, the Finite Difference method is by far the most

used one, from as old as Burggraf [1] to as new as Kalita

and Gupta [2]. Most of the authors formulated the governing

equations in stream function-vorticity variables, most famous

of which are Ghia et al. [3] who used coupled strongly implicit

multigrid (CSI-MG) based on the work of Rubin and Khosla

[4] method in the solution of the driven flow in a square cavity,

for Reynolds number Re 6 10; 000. They used a uniform mesh

of 257 * 257. They presented a Second-order accurate tabu-

lated benchmark results that have served as ‘‘The” result to

compare against ever since. Recently, Erturk et al. [5] using

a fine uniform grid mesh of 601 � 601, computed a steady

solution for the driven cavity flow for Reynolds number

Re 6 21; 000 with maximum absolute residuals of the govern-

ing equations that were less than 10�10, although their solution

was second order spatially accurate, but they provided a six

order accurate solution for some variables using Richardson

extrapolation.

On the other hand other authors formulated their equations

using only the stream function as a variable. Of those we men-

tion Schreiber and Keller [6] who presented fourth-order spa-

tially accurate results for Reynolds number Re 6 10; 000. Their

numerical methods combined an efficient linear system solver,

an adaptive Newton-like method for nonlinear systems, and a

continuation procedure for following a branch of solutions

over a range of Reynolds numbers, on a 180 � 180 uniform

grid. Also, Poochinapan [7] obtained a solution up to Rey-

nolds number Re= 5000 with second-order spatial accuracy

on a 122 � 122 grid.

However, some authors used primitive variables like Vanka

[8] who presented a second order accurate solutions for steady

flows up to Reynolds Number Re ¼ 5000. He used a uniform

grid of 321 � 321. Bruneau and Saad [9] obtained a steady

and periodic solutions for various Reynolds numbers by solv-

ing the unsteady Navier-Stokes equations on a 1024 � 1024

uniform staggered grid. Their numerical simulation lies on a

multigrid solver with a cell-by-cell relaxation procedure. Clas-

sical Euler or Gear time schemes are coupled to a second-order

approximation of the linear terms in space. Convective terms

were treated explicitly and approximated by third-order

schemes.

Standing apart from them Gupta and Kalita [10], they used

stream function-velocity formulation to obtain a second order

accurate solution for Reynolds Number 100 6 Re 6 10; 000.

Their computation was done on uniform 161 � 161 grid. They

used a biconjugate gradient method to obtain the numerical

solutions of the aforementioned fluid flow problem.

Second in popularity was the Finite volume method in
primitive variable formulation as an example, Wright and
Gaskell [11] presented a second and fourth order spatially accu-

rate steady solution for Reynolds number 100 6 Re 6 1000
using the staggered grid arrangement and control volume for-
mulation. They used the Block Implicit Multigrid Method

(BIMM) on a very fine uniform mesh of 1024. Similarly,
Magalhães et al. [12] presented a second order spatially and
temporally accurate solution for Reynolds Number

Re ¼ 100; 400; and 1000 on a non-uniform mesh of 51 � 51.
Finite element method takes the third place where Olson

and Tuann [13] recasted the full Navier-Stokes equations in
the form of a single, fourth order equation for stream function,

with an 18 degrees-of-freedom triangular element, such that
the velocities were continuous and the incompressibility was
satisfied exactly. They covered Reynolds Number from 10�4

to Re ¼ 3450, with a uniform mesh of 8 � 8, and produced a
remarkably accurate results for such coarse mesh. Likewise,
Barragy and Carey [14] used finite element for the solution

of the lid-driven cavity flow up to Reynolds number
Re 6 12; 500. They used a graded mesh of elements of degree
p= 8, and they also incorporated an under resolved solution

for Re ¼ 16; 000.
After that comes several other methods such as Lattice

Boltzmann which have been used by Hou et al. [15] with com-
pressibility effects, for the solution of the driven cavity flow for

Reynolds number Re 6 7500 using a 256 � 256 grid points.
Similarly, Lin et al. [16] used the multi relaxation time
(MRT) lattice Boltzmann equation (LBE) with D2Q9 model

to compute a steady solution at different Reynolds numbers
(100–7500), using a 129 � 129 grid.

Boundary Element has been used by Grigoriev and Dar-

gush [17] for Reynolds number Re 6 5000. They carried out
the simulation on a non-uniform mesh with 1680 hexagonal
regions. In addition Aydin and Fenner [18] used it to acquire

a solution for low-to-moderate-Reynolds number
0 6 Re 6 1200. They used four different mesh sizes (maximum
being 81 Boundary elements).

Smooth particle hydrodynamics has been used by Szewc

et al. [19] along with three different incompressibility treat-
ments namely WCSPH, weakly compressible smoothed parti-
cle hydrodynamics; ISPH, incompressible smoothed particle

hydrodynamics; with two variants PPS, particle-based Poisson
solver; GPS, grid-based Poisson solver, to obtain a solution fir
lid driven cavity at Re= 1000, with 57,600 particles. And

Khorasanizade and Sousa [20] computed a solution for flow
at moderate Reynolds numbers 100 6 Re 6 3200, employing
the mesh-free (SPH), with a new treatment for no-slip bound-
ary conditions. They carried out their study using different

spatial resolutions maximum of which is L/200.
Chebyshev collocation method has been used by Botella

and Peyret [21] to present a highly-accurate spectral solutions

with extensive benchmark results for the flow at Reynolds
number Re= 1000 using with a maximum of grid mesh of
N= 160 (polynomial degree).

Incremental unknowns were utilized by Goyon [22] to solve
the unsteady 2D Navier-Stokes equations on an un-regularized
driven cavity. They presented steady solution for Reynolds

number Re 6 7500. For Reynolds number
10; 000 6 Re 6 12; 500 they presented a periodic solution,
although they admit that this investigation field is less
exploited, because of the computational cost.
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