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Abstract: We address the control synthesis of hybrid systems with discrete inputs, disturbances and
outputs. The control objective is to ensure that the events of the closed-loop system belong to the
language of the control requirements. The controller is sampling-based and it is representable by a finite-
state machine. We formalize the control problem and provide a theoretically sound solution. The solution
is based on solving a discrete-event control problem for a finite-state abstraction of the plant. We propose
a specific construction for the finite-state abstraction. This construction is not based on discretizing the
state-space, but rather on converting the continuous-time hybrid system to a discrete-time one based on
sampling. The construction works only for a specific class of hybrid systems. We describe this class of
systems and we provide an example of such a system, inspired by an industrial use-case.
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1. INTRODUCTION
Motivated by applications in the area of high-tech systems,
in particular control of printers, Petreczky et al. (2008b), we
are interested in the following control problem. The plant is
a continuous-time hybrid system which is subject to discrete
disturbances and control inputs and which generates discrete
outputs and internal events. The disturbances are imposed by
the environment and the control inputs can be used to influence
the system behavior. The desired controller can read the outputs
and it generates control inputs. Furthermore, the controller
should be realizable by a finite-state machine, and it is activated
at equidistant sampling times with sampling rate ∆. The control
objective is to ensure that the sequences of internal events
generated by the plant satisfy the control requirements.
Contribution We present a mathematical formulation of the
control problem above. We also propose the following solution.
Step 1 Compute an abstraction (over-approximation) of the
symbolic (event) behavior of the plant, such that the ab-
straction has a finite-state representation. This abstraction
is based on transforming the original system to a discrete-
time one. The states of the abstraction are those states of
the hybrid system which can be reached at sampling times.
Under suitable assumptions, the thus obtained state-space is
finite.

Step 2 Solve the related discrete-event control problem for
the finite-state abstraction. The solution is a discrete-event
controller representable by a Moore-automaton. Interpret the
solution as a controller for the original plant.

We prove that the procedure above is theoretically sound. The
discrete-event control problem of Step 2 can be solved using
game theory, see Grädel et al. (2002) or, under additional as-
sumptions, using classical supervisory control, see Petreczky
et al. (2008a). We also present a procedure for constructing a
finite-state abstraction. The procedure can be made effective,
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but it may be computationaly expensive. The finite-state ab-
straction can be computed only for a specific class of hybrid
systems which satisfies the following properties; (1) distur-
bances or internal events do not influence the continuous dy-
namics, (2) output events do not influence the system dynamics,
(3) only finitely many events are generated on any time interval,
(4) the set of states reachable at sampling times is finite. For
the last property we present sufficient conditions in terms of
existence of a Lyapunov-like function. While these assumptions
are strong, there are hybrid systems of practical relevance (see
Petreczky et al. (2008b) and the example of this paper) for
which they hold.
Related work To the best of our knowledge, the contribution
of the paper is new. Control of hybrid systems using finite-
state approximation is a classical topic, Alur et al. (2000);
Gonzalez et al. (2001); Chutinan and Krogh (2003); Förstnera
et al. (2002); Moor et al. (2002); Koutsoukos et al. (2000).
The main difference with respect to Gonzalez et al. (2001);
Chutinan and Krogh (2003); Koutsoukos et al. (2000) is the
presence of partial observations, that the generation of events is
not synchronous with inputs, and that the hybrid plant contains
reset maps. With respect to Förstnera et al. (2002); Moor et al.
(2002) the main differences are that we consider hybrid systems
as opposed to continuous ones, and we address partial observa-
tions. In addition, we do not propose a general purpose finite-
state abstraction, rather the proposed abstraction is intended as
a vehicle for solving the specific control problem. The results of
Raisch and O’Young (1995); Moor and Raisch (1999); Raisch
(2000) address a problem which is quite different from the one
considered in this paper. The approach of the paper resembles
Alur et al. (2000); Tabuada and Pappas (2005); Fainekos et al.
(2007); Belta et al. (2005). However, the abstraction notion of
this paper and the problem formulation are different. The con-
trol problem of this paper is different from Philips et al. (2003).
In addition, the computation of the finite-state abstraction pro-
posed in this paper is quite different from that of the papers



cited above. In Chutinan and Krogh (2003); Koutsoukos et al.
(2000); Alur et al. (2000); Fainekos et al. (2007); Belta et al.
(2005); Philips et al. (2003) the finite-state abstraction is com-
puted by dividing the state-space of the system into regions. In
Förstnera et al. (2002); Moor et al. (2002); Raisch and O’Young
(1995); Moor et al. (2002); Moor and Raisch (1999); Raisch
(2000), the abstraction of the system is constructed by storing
the output (or state) response of the system to input sequences
of finite length. In contrast, here the abstraction is obtained by
sampling the hybrid system in time, not by discretizing it in
space. In particular, the abstraction lives on the same state-space
as the original system.
Outline of the paper In §3 we state the control problem
we want to solve. The reduction of the hybrid problem to a
discrete-event one is discussed in §4. In §5 the class of hybrid
systems of interest is defined and the computation of a finite-
state abstraction of the hybrid plant is discussed. In §6, as an
illustration, we present an example.

2. PRELIMINARIES
General notation We use the standard notation and terminol-
ogy from automata theory Eilenberg (1974). N is the set of
natural numbers including zero. If Σ is a finite alphabet, then
Σ∗ denotes the set of finite strings (words) on Σ. The empty
word is denoted by ε. An infinite word over Σ is an infinite
sequence w = a1a2 · · · ak · · · with ai ∈ Σ, i ∈ N. The set of
infinite words is denoted by Σω. The length of a (in)finite word
is denoted by |w|; if w is an infinite word, then |w| = +∞.
For any (in)finite word w, and for any i ∈ N (in case w is finite
word, for any 0 ≤ i ≤ |w|), w1:i denotes the finite word formed
by the first i letters of w, i.e. w1:i = a1a2 · · · ai. If i = 0, then
w1:i is the empty word ε. The set of non-negative reals is R+.
Moore-automata A Moore-automaton (Eilenberg (1974)) is a
tuple A = (Q, I, Y, δ, λ, q0) where Q is the finite state-space, I
is the input alphabet, Y is the output alphabet, δ : Q× I → Q
is the state-transition map, λ : Q → Y is the readout map,
and q0 ∈ Q is the initial state. The Moore-automaton A is a
realization of a map φ : I∗ → Y , if for all w = u1u2 · · ·uk ∈
I∗, k ≥ 0 and u1, u2, . . . , uk ∈ I , φ(w) = λ(qk) where
qi = δ(qi−1, ui) for all i = 1, 2, . . . , k.
Monoid automata Recall from Berstel (1979); Eilenberg
(1974) that a monoid M is a semi-group with a unit element.
A finite-state automaton on a monoid M , abbreviated as DFA,
is a tuple T = (Q,M,E, F, q0) where Q is a finite set of
states, M is the monoid of inputs, E ⊆ Q × M × Q is a
state-transition relation, where E is a finite set, F ⊆ Q is the
set of accepting states, q0 ∈ Q is the initial state. An element
m ∈ M is accepted by T if there exists mi ∈ Mi and qi ∈ Q,
i = 1, 2, . . . , k, k ≥ 0 such that (qi,mi+1, qi+1) ∈ E for
i = 0, 1, . . . , k − 1, qk ∈ F and m = m1m2 · · ·mk. The
set L ⊆ M is recognized by T , denoted by L(T ), if L consists
of precisely those elements m ∈ M which are accepted by T .
Sequential input-output maps will be used to model the
discrete-event abstractions of hybrid systems. The concepts
below are discussed in more detail in Petreczky et al. (2008a).
Definition 1. A multi-valued map R : Σ∗ → 2X∗×Y ∗

is called
a sequential input-output map, if
(1) R(ε) = (ε, ε), and for all s ∈ Σ∗, R(s) is a non-
empty set. Furthermore, R is length-preserving in its X-valued
component, i.e. if (x, y) ∈ R(s), with x ∈ X∗ and y ∈ Y ∗,
then the length of s and x are the same, i.e. |s| = |x|,
(2) R is prefix preserving, i.e. for each word s ∈ Σ∗ and letter
a ∈ Σ, if (x, y) ∈ R(sa), then there exist x ∈ X and y ∈ Y ∗,

x̂ ∈ X∗, ŷ ∈ Y ∗ such that x = x̂x, y = ŷy and (x̂, ŷ) ∈ R(s),
(3) R is non-blocking, i.e. for each s ∈ Σ∗, a ∈ Σ, (x, y) ∈
R(s), (xx, yy) ∈ R(sa) for some x ∈ X , y ∈ Y ∗.

Definition 2. A DFA T = (Q,M,E, F, q0) defined over the
monoid M = Σ∗ × X∗ × Y ∗ is called a quasi-sequential
transducer, if (1) F = Q, i.e. all states are accepting, (2) the
state-transition relation E is a partial map E : Q × Σ × X ×
Y ∗ → Q, (3) for each state q ∈ Q and letter a ∈ Σ there exist
x ∈ X and y ∈ Y ∗ such that E(q, u, x, y) is defined.
Definition 3. The sequential input-output map R : Σ∗ →
2X∗×Y ∗

is quasi-recognizable, if there exists a quasi-sequential
transducer which recognizes the graph of R, i.e. which recog-
nizes the set {(u, x, y) ∈ Σ∗ ×X∗ × Y ∗ | (x, y) ∈ R(u)}.

3. CONTROL PROBLEM

The plant of interest is a hybrid system which reacts to discrete-
valued control inputs and disturbances, and generates discrete-
valued outputs and internal events. We view the inputs and
outputs as discrete events. Thus, the control inputs are events
generated by a potential controller, the disturbances are events
generated by the environment. The outputs and internal events
are events generated by the plant. The only difference between
outputs and internal events is that outputs are visible (i.e.
detectable by sensors), while internal events are not.
Notation 1. (Plant and events). We denote the plant by H . We
denote by Ec the set of control inputs, Ed the set of distur-
bances, Eo the set of outputs, Ei the set of internal events. We
assume that Ec, Ed, Eo, Ei are finite sets.
In order to define the input-output behavior of the plant for-
mally, we need the following notion.
Definition 4. Let E be a finite set and let ⊥ /∈ E. Consider a
(in)finite timed sequence of elements of E.

s = (e1, t1)(e2, t2) · · · (ek, tk) · · · (1)
where 0 ≤ t1 < t1 < t2 < · · · , ei+1 ∈ E, ti+1 ∈ R+ for
i ∈ N, i < |s|. Here |s| is the length of s, and |s| = +∞ if
s is an infinite sequence. If |s| = +∞, then we assume that
supi∈N ti+1 = +∞. We can identify s with a map

g : R+ 3 t 7→
{

ei+1 ∈ E if t = ti+1 for some i ∈ N
⊥ otherwise (2)

The map g above, is called a time-event map. The set of all such
maps is denoted by PE . Denote the sequence of elements of E
induced by g by UT(g) = e1e2 · · · ek · · · ∈ E∗ ∪ Eω.
I.e., the timed-event function g takes values in the event set
E at isolated time instances, and the value ⊥ encodes the
absence of events at a certain time instance. By applying the
above definition to E ∈ {Ec, Ed, Eo, Ei}, we obtain the sets
PEc

, PEd
, PEo

, PEi
describing the time signals with values in

inputs, disturbances, outputs and internal events respectively.
Definition 5. (Input-output map of the plant). The input-output
map of H is a causal 2 map υH : PEc

× PEd
→ PEo

× PEi
.

Definition 6. A hybrid controller is a map C : PEo
→ PEc

.
We study controllers which have a finite-state representation
and are activated at fixed sampling rate ∆ > 0. The controller
can only detect the set of outputs which occurred in a sampling
interval. The formal definition is as follows.
2 By causality of υH we mean that the response of υH depends only on the
past inputs and on the past and present disturbances, i.e. for any ui ∈ PEc

di ∈ PEd
, (oi, ôi) = υH(ui, di), i = 1, 2, if d1|[0,t] = d2|[0,t], u1|[0,t) =

u2|[0,t) then o1(t) = o2(t) and ô1(t) = ô2(t), for all t ∈ R+.
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