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Abstract The present paper is aimed at studying thermoelastic diffusion interactions in a thick cir-

cular plate of infinite extent and finite thickness subjected to an axisymmetric heat supply and a heat

source in the context of Lord–Shulman theory of generalized thermoelastic diffusion. The upper

and the lower surfaces of the thick plate are traction free and the chemical potential is assumed

to be a known function of time. Integral transform techniques are used to find the analytic solution

in the transform domain. Mathematical model is prepared for Copper material plate and the

numerical results are discussed and illustrated graphically.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The behaviour of elastic bodies under the influence of non-
uniform temperature fields is studied in the theory of thermoe-
lasticity. Widespread interest was developed in this theory due

to its applications in diverse engineering problems such as
problems related to modern aircraft structure, design of
nuclear reactors, and ship building processes. The classical the-

ory of dynamic thermoelasticity introduced by Biot [1] takes
into account the coupling between temperature and strain
fields. However, it involves a paradox that the thermal distur-

bances propagate with infinite speeds. To remove this paradox
generalized thermoelasticity theories have been developed.

Lord and Shulman [2] introduced the theory of generalized

thermoelasticity with one relaxation time, which is the time
needed for the acceleration of thermal wave. Thus, making
the heat conduction equation hyperbolic in nature predicts

finite wave propagation.
Diffusion is one of several transport phenomena that

occurs in nature. The diffusion in solids can be explained

in two ways: either according to Fick’s laws where diffusion
is the passive movement of molecules or particles along a
concentration gradient, or from regions of higher to regions
of lower concentration or from the atomic point of view

where diffusion is considered as a result of random walk of
the diffusing particles. Thermoelastic diffusion in an elastic
solid takes place due to the coupling between the fields of

temperature, mass diffusion and strain. Heat and mass
exchange takes place during thermoelastic diffusion in an
elastic solid. Nowacki [3–6] developed the theory of thermoe-

lastic diffusion within the context of classical coupled ther-
moelasticity and studied some dynamical problems of
diffusion in solids. The theory of Nowacki uses Fick’s law.
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It predicts infinite speed of wave propagation which is a
major drawback. Sherief et al. [7] developed the theory of
generalized thermoelastic diffusion in an elastic solid in the

context of Lord–Shulman theory (TEDLS), which allows
finite speeds of propagation of thermal disturbances. In this
theory, Fick’s law was modified to include the time derivative

of the flux of the diffusive mass. Kumar and Kansal [8] intro-
duced the generalized theory of thermoelastic diffusion in the
context of Green-Lindsay theory by introducing thermal

relaxation time parameters and diffusion relaxation parame-
ters into the governing equations. Olesiak and Pyryev [9]
reported influence of cross effects while studying thermoelas-
tic diffusion in an elastic cylinder. They observed that the

thermal excitations result in an additional mass concentration
and vice-versa. A problem of thick plate in generalized ther-
moelastic diffusion theory was discussed by Sherief and El-

Maghraby [10]. Sherief and Saleh [11] have considered the
problem of thermoelastic half-space in the context of general-
ized thermoelastic diffusion with one relaxation time. Aouadi

[12] studied a one-dimensional problem for an infinitely long
solid cylinder and El-Maghraby [13,14] solved two-
dimensional problems for a thick plate and half-space under

the action of body forces. Elhagary [15] has discussed one
dimensional problem of generalized thermoelastic diffusion
for a long hollow cylinder. Allam [16] studied a stochastic
half-space problem in the theory of generalized thermoelastic

diffusion including heat source. Tripathi et al. [17] discussed a
two dimensional dynamic problem of generalized thermoelas-
ticity in Lord–Shulman theory for a thick circular cylinder

with internal heat generation. Tripathi et al. [18,19] studied
problems of generalized thermoelastic diffusion in a thick cir-
cular plate and a half-space under axisymmetric distributions.

Recently, Allam et al. [20] discussed a stochastic thermoelas-
tic diffusion problem in an infinitely long annular cylinder.

In this work, we have extended our work [18] by includ-

ing heat source in a generalized thermoelastic diffusion
problem for a thick circular plate of finite length and infinite
extent subjected to an axisymmetric heat supply whose
boundaries are traction free. The chemical potential consid-

ered is time dependent. The classical coupled thermoelastic
diffusion theory (TEDCT) is recovered as a special case.
Analytic solutions for temperature, concentration, chemical

potential, displacement and stresses are obtained in the
Laplace transform domain. Numerical inversion of Laplace
transforms are performed using Gaver-Stehfest Algorithm

[21–23] which is considerably more stable and computation-
ally efficient than inversion using the discrete Fourier trans-
form [24] and all integrals were evaluated using Romberg’s
integration technique [25] with variable step size. A mathe-

matical model is prepared for copper material plate and
results are discussed along with the graphical representation.
The results presented here may be useful in many engineer-

ing problems related to diffusion in isotropic elastic solids
with internal heat generation.

2. Governing equations

The governing equations for the generalized thermoelastic dif-
fusion in an isotropic medium in the absence of body forces

and in the presence of internal heat generation are given as
follows [7]:

1. The equation of motion is given by,

q€ui ¼ lui;jj þ ðkþ lÞuj;ij � b1T;i � b2C;i ð1Þ
where T is the absolute temperature, C is the concentration of
the diffusive material, q is the density, k and l are Lame’s con-

stants and b1 and b2 are material constants given by
b1 ¼ ð3kþ 2lÞat and b2 ¼ ð3kþ 2lÞac, where at is the coeffi-
cient of linear thermal expansion, and ac is the coefficient of

linear diffusion equation.
2. The energy equation is given by,

kT;ii ¼
@

@t
þ s0

@2

@t2

� �
qCETþT0b1eþT0aCð Þ � q 1þ s0

@

@t

� �
Q

ð2Þ
where k is the thermal conductivity of the medium, CE is the

specific heat at constant strain, s0 is the thermal relaxation time,
T0 is the reference temperature chosen such that
ðT� T0Þ=T0j j << 1, a is the measure of thermoelastic diffusion

effect, e ¼ ui;i is the cubical dilatation, where ui, i ¼ 1; 2; 3 are the

components of the displacement vector and Q is the amount of

heat resulted from the internal heat generation.
3. The equation of mass diffusion is given by,

Db2e;ii þDaT;ii þ
@

@t
þ s

@2

@t2

� �
C ¼ DbC;ii ð3Þ

where D is the diffusion coefficient, b is a measure of diffusive
effect and s is the diffusion relaxation time.
4. The constitutive equations are,

rij ¼ 2leij þ dij ke� b1ðT� T0Þ � b2Cð Þ ð4Þ

P ¼ �b2eþ bC� aðT� T0Þ ð5Þ
where rij, i; j ¼ 1; 2; 3 are the components of stress tensor, P is

the chemical potential of the material per unit mass and eij,

i; j ¼ 1; 2; 3 are the components of the strain tensor, given by

eij ¼ 1

2
ui;j þ uj;i
� �

; i; j ¼ 1; 2; 3 ð6Þ

3. Formulation of the problem

We take the axis of symmetry as the z axis and the origin of the
system of co-ordinates is at the middle plane between the
upper and lower faces of the plate. The problem is studied
using the cylindrical polar co-ordinates ðr;u; zÞ. Due to the

rotational symmetry about the z axis, all quantities are inde-
pendent of the co-ordinate u.

Consider a thick circular plate of thickness 2b occupying

the space D defined by

D ¼ ðr;u; zÞ : 0 6 r 6 1;�b 6 z 6 bf g
Let the thick circular plate be subjected to an axisymmetric

heat supply dependent on the radial and axial directions of the

cylindrical co-ordinate system. For time t> 0, heat is gener-
ated within the plate at the rate Qðr; z; tÞ. The initial tempera-
ture in the thick plate is given by a constant temperature T0

and the heat flux g0Fðr; zÞ is prescribed on the upper and lower
boundary surfaces. Under these conditions, the thermoelastic
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