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Abstract A discrete resonant band-pass filter with a fast calculation algorithm, which can be used

to perform discrete frequency transformations, is presented. The algorithm has low memory con-

sumption requirements. It implements a numerical integration method, simulating a harmonic res-

onator element modeled by the under-damped driven oscillator equations, expressed in a discrete

form. The output from the presented filter is a discrete function with an amplitude of the steady-

solution that closely matches the theoretical steady-solution amplitude of the continuous band-

pass filter output. Multiple discrete resonant band-pass filters can be used to build a filter bank,

which in turn can be used to perform a time-to-frequency transformation of discrete signals. The

filter achieves a frequency and a time localization without utilizing the time windowing method.

The presented stand-alone calculation algorithm related to this filter produces its output with a

delay of just one sampling period. The algorithm’s calculation cost is only 3 multiplications and

3 additions per sample, and does not require long memory buffers. The presented transformation

does not surpass the precision of the Discrete Fourier and Discrete Wavelet Transformations. How-

ever, it may prove essential when the noise-artifacts of the near-real-world simulation are necessary

in order to produce some specific auditory-perception phenomena.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Vast number of signal processing applications require fre-
quency analysis of discrete (sampled) signals. Digital filters

and discrete transformations into the frequency domain are
used to fulfill those requirements.

Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR) filters are used to accomplish high-pass, low-

pass, band-pass and other types of filtering. FIR filters are pro-
ducing the output based only on the input signal, where the
IIR filters are using past values of the output to produce the

next output value (a feedback structure); therefore, they may
show instability [1].

Best known FIR design method is the Generalized Window

Method [2], while as usual IIR filter design methods are those
derived from analog Butterworth, Chebyshev, and Elliptic
Function filters [3]. Butterworth filters give maximally flat
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amplitude response; Chebyshev filters have a steeper roll-off
and more passband or stopband ripples than Butterworth fil-
ters; and Elliptic Function filters have equalized ripple behav-

ior between the passband and the stopband.
Diverse windowed Discrete Fourier Transformations

(DFTs), Discrete Wavelet Transformations (DWTs) and other

related transformations exist, addressing the transformation
requirements. They transform sampled signals from one
domain (time, location or other) into the frequency domain.

The discrete transformations can be used as an integral part
of a digital filter design. In addition, the filter banks can also
be used to perform transformations into the frequency
domain. Both transformation techniques, the discrete transfor-

mations and the filter banks, have advantages and disadvan-
tages depending on the specifics of the application at hand
[1]. In the following text, for simplicity, I utilize time as a

source domain, but the reader should consider that the pre-
sented is equally applicable to other source domains.

This study was triggered by a research in the domain of

computational neuroscience and neural networks, where
near-real-world simulation was required in order to produce
certain artifacts which may result in explanation of certain

auditory perception phenomena. Windowed DFT and DWT
produce artifacts that are not natural, but rather specific to
the abstract mathematics that these transformations are based
on.

Several constraints apply to DFT and DWT [4,5]. I present
briefly those relevant to their comparison with the DRBF/
DRT in this section. I disclose these constraints early, so they

will serve as a context within which the DRBF/DRT methods
are presented. In Section 5 these constraints are reviewed
again, and some identified constraints of the DRBF/DRT

are disclosed.

(1) DFT and DWT utilize time-windowing, introducing an

error or noise within the result of the transformations,
due to the harmonic components caused by the time-
window boundaries.

(2) DFT and DWT introduce delay in production of the

transformation result, caused by the need to collect a
buffer of samples. Wider buffer (bigger number of sam-
ples in the time window) is required in order to achieve

better frequency precision. Consequently, attempting to
increase the frequency precision, DFT and DWT
increase the delay, constraining their applicability in

real-time applications.
(3) In order for DFT and DWT calculation algorithms to

perform efficiently, the number of the samples in the
buffer must be a power of 2 (2n). This further constrains

the ability to achieve finer compromise between the time
localization and frequency precision.

(4) The calculation complexity (cost) achieved so far is O

(NLog(N)) for DFT (per buffer of N samples) and O
(N) for DWT (per scale) [6]. DFT and DWT imple-
mented algorithms require significant amount of com-

puting memory used to maintain the buffers,
additionally decreasing the performance due to opera-
tions such as memory reallocation, retrieving and assign-

ing values.

Here I propose a discrete resonant band-pass filter (DRBF)

fast calculation algorithm. The DRBF can be used to perform

fast time-to-frequency domain transformations, taking an
approach different than the DFT and DWT calculation meth-
ods. For the purpose of this text I will name this transforma-

tion as Discrete Resonant Transformation (DRT). The DRT
overcomes some of the outlined constraints of the DFT and
DWT. I will occasionally use the term resonator to refer to

the DRBF when stressing the resonance events is valuable.
As of the time of writing this document, a benchmark compar-
ison between the DRT and the DFT/DWT implementations

has not been performed.

2. Mathematical foundation

We start with a system, consisting of a harmonic resonator that
oscillates according to the well-known equation of a driven
harmonic oscillator ([6], pp. 211):

m
d2x

dt2
¼ �c

dx

dt
� kxþDðtÞ ð1Þ

where
– m is the mass that oscillates

– x is the elongation of the oscillator (the distance from the

stable position at time t)
– t is the time dimension
– c is a viscous damping coefficient; it determines the deceler-

ation of the oscillations due to a friction, which in turn

depends on the current speed of the oscillator (dxdt)

– k is a coefficient that determines the magnitude of the force
that pulls the oscillator back to its stable position (stiffness),

which depends on the elongation
– DðtÞ is the driving force, represented as a function of time.

Eq. (1) describes that the acceleration of the oscillating
mass is caused by the following:

– the driving force at the current moment of time,
– the distance of the center of the oscillating mass from its
stable position at the present moment of time, and

– the speed of the oscillating mass at the current moment of

time.

Converting (1) from a continuous to a discrete form,

inspired by the Störmer–Verlet integration method [7], assum-
ing that the sampling rate is much higher than the oscillating
frequency, we get:

m
D2xi

Dt2
¼ �c

Dxi�1

Dt
� kxi�1 þDi�1 ð2Þ

where
– Dt is the sampling period of time (note: the sampling rate is
considered constant and it must be much higher than the
resonant frequency – see Section 5)

– Dxi�1

Dt is the speed (vi�1), at the moment ði� 1ÞDt
– D2xi

Dt2 is the acceleration at the moment iDt
– Di�1 is the sample of the driving force’s magnitude at the
moment ði� 1ÞDt.

This conversion introduces an error that will be analyzed in
Appendix C. If we express the speed (v) and the acceleration

(a) as follows:
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