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Abstract We use a moving least squares meshless method to solve the nonlinear Kuramoto-

Sivashinsky equation. The accuracy of the method is demonstrated by three test problems for which

the numerical results are found to be in excellent agreement with analytical solution.
� 2016 Faculty of Engineering, Alexandria University Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Kuramoto-Sivashinsky (KS) [1,2] equation is a nonlinear
fourth order partial differential equation that has been pro-
posed in the seventies for describing turbulence in reactive sys-

tems and diffusive instabilities in laminar flame fronts.
Depending on the associated parameters this equation can be
seen as an example of complex spatiotemporal dynamics lead-
ing to chaotic behavior. It has therefore been the subject of

extensive analytical and numerical studies. Finite difference,
finite volume and finite element methods have been used for
the spatial discretization [3–7]. In order to use a Lattice

Boltzmann method Lai and Ma [8] have proposed to construct
a five velocity lattice Boltzmann model by introducing an
amending function. Their results were found to be very accu-

rate. A meshfree method using radial basis function (RBF)
for the space discretization has also been proposed recently
[9]. In this work, we introduce the moving least squares
meshless method to solve the KS equation. This approach

has already been used to solve several problems in heat trans-
fer and related fluid flow problems ranging from natural and

forced convection to radiative transfer in participating media
[10–17]. In all these works second order in space meshless dis-
cretization has been used successfully. In [18] we have consid-

ered higher order meshless approximations to solve second
order diffusion and transport-diffusion type equations. This
meshless discretization technique can be found in the literature

under multiple denominations as in [19,20]. Under several
other formulations, the meshless approaches are still the sub-
ject of numerous developments [21–26]. In the following sec-

tions, the fourth order meshless approximation method is
first described. The same three numerical cases studied by
Lai and Ma [8] are then considered. It is found that the mesh-
less results are in excellent agreement with the exact solutions.

2. Fourth order in space meshless method

Let us consider the following Taylor development at order 4

around a point M of coordinate x for a neighbor point Mi

of coordinate xi of the space discretization:* Corresponding author.
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u�
i ðxiÞ ¼ uþ ðxi � xÞ du

dx
þ ðxi � xÞ2

2!

d2u

dx2
þ ðxi � xÞ3

3!

d3u

dx3

þ ðxi � xÞ4
4!

d4u

dx4
þOðDx4Þ ð1Þ

This can be written in more compact form as follows:

u�
i ðxiÞ ¼ hpðMi;MÞi � haMiT ð2Þ

hpðMi;MÞi is the line vector of the generalized polynomial

basis and haMiT the transpose vector of the generalized vari-
ables of the approximation which are the successive
derivatives.

Hence we have the following:

hpðMi;MÞi ¼ h1; ðxi � xÞ; ðxi � xÞ2; ðxi � xÞ3; ðxi � xÞ4i ð3Þ
and

haMiT ¼ ha0; a1; a2; a3; a4iT ð4Þ
If the discrete u�

i values of function u are supposed to be

known on n neighboring nodes Mi, one can relate the approx-

imations of the successive derivatives to the discrete values u�
i ,

by minimizing the following quadrature error:

IðaMÞ ¼
XN
i¼1

xðMi;MÞ ui � hpðMi;MÞihaMiT
� �2n o

ð5Þ

where x is a positive weight function of compact support cen-
tered at the considered pointM and rapidly decaying. The sup-
port of this function will define the number of neighboring

nodes used for the approximation.
One can now minimize the quadratic form by writing the

following:

@IðaMÞ
@ai

¼ 0 for i ¼ 0; . . . 4 ð6Þ

This leads to the system:

AM
� � �

u
du
dx

d2u
2!dx2

d3u
3!dx3

d4u
4!dx4

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

�

¼ hBMiT ð7Þ

where [AM] and hBMiT are defined by the following: hBMiT

½AM� ¼
XN
i¼1

xðMi;MÞhpðMi;MÞiThpðMi;MÞi ð8Þ

hBMiT ¼
XN
i¼1

xðMi;MÞhpðMi;MÞiT:ui ð9Þ

If matrix [AM] is not singular, the system (7) can be
inverted:

u
du
dx

d2u
2!dx2

d3u
3!dx3

d4u
4!dx4

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

�

¼ AM
� ��1 �

Xn

i¼1

xðMi;MÞ � hpðMi;MÞiT � ui

( )

ð10Þ

and the successive derivatives of the unknown function at

point M are expressed in terms of the different values ui of
the function in the chosen neighboring nodes.

If haji represents the jth line of the inverse matrix AM
� ��1

,

the derivatives now simply write the following:

@u
@x

¼
X

Mi2VM

xðMi;MÞha1ihpðMi;MÞiT:ui ð11Þ

@2u
@x2

¼ 2!
X

Mi2VM

xðMi;MÞha2ihpðMi;MÞiT:ui ð12Þ

@3u
@x3

¼ 3!
X

Mi2VM

xðMi;MÞha3ihpðMi;MÞiT:ui ð13Þ

@4u
@x4

¼ 4!
X

Mi2VM

xðMi;MÞha4ihpðMi;MÞiT:ui ð14Þ

The present collocation meshless method uses the strong
formulation of the equation to solve in the sense that at each

calculation point, all the derivatives appearing in the equation
are replaced by their approximations given by previous expres-
sions (11)–(14) leading thus to an algebraic equation at the
point and finally to a system of N algebraic equations if N cal-

culation points are used in the spatial discretization. Boundary
conditions are introduced to the algebraic system which is then
solved once in a steady state problem or at each time step in an

unsteady problem which is the case herein. For the time dis-
cretization we used a simple Euler implicit scheme although
more accurate schemes could be used.

The weighting function can have several forms (triangular,
Hanning, exponential. . .). In this work the following Gaussian
function has been employed:

xðrÞ ¼ Exp ln eð Þ r

S

� �2
� �

where r= |MMi| represents the distance between points M

and his neighbors Mi and where S is the size of the function
support. It is important to note that the weight function must
be sufficiently large to enclose a number of nodes at least equal
to the number of generalized variables. Finally, our previous

works [10–17] have shown that e value can be chosen in the
range [10�3–10�9], depending on the number of selected nodes.
In this work, a constant value of 10�6 is chosen.

3. Application to the Kuramoto-Sivashinsky equation

We present in this section the results obtained by the previous

meshless method when applied to the following KS equation:

@u

@t
þ u

@u

@x
þ a

@2u

@x2
þ b

@3u

@x3
þ c

@4u

@x4
¼ 0 ð15Þ

where a, b and c are problem dependant constants. The three
particular problems studied in [8] are used to test the present

approach. As in [8] the global relative error (GRE) is intro-
duced for testing the precision:

GRE ¼
P

i u
�ðxi; tÞ � uðxi; tÞj jP

i uðxi; tÞj j ð16Þ

where u* is the numerical solution and u the exact solution.
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