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A B S T R A C T

In this work, the banded behaviour of composite one-dimensional structures with an additive manufactured
stiffener is examined. A finite element method is used to calculate the stiffness, mass and damping matrices, and
periodic structure theory is used to obtain the wave propagation of one-dimensional structures. A multi-dis-
ciplinary design optimisation scheme is developed to achieve optimal banded behaviour and structural char-
acteristics of the structures under investigation. Having acquired the optimal solution of the case study, a re-
presentative specimen is manufactured using a carbon fibre cured plate and additive manufactured nylon-based
material structure. Experimental measurements of the dynamic performance of the hybrid composite structure
are conducted using a laser vibrometer and electrodynamic shaker setup to validate the finite element model.

1. Introduction

Noise and vibration transmission within payload and passenger
compartments is a major issue for modern transport vehicles. To ensure
the quality of their products, manufacturers in the transport industry
are simultaneously trying to optimise the mechanical and the vi-
broacoustic performance of structural assemblies. It has been demon-
strated that judiciously designed periodic structures can induce vibra-
tion attenuation and stop-band behaviour in specific frequency ranges
(so-called band gaps or stop bands).

Floquet [1] was the first to publish on periodic structures, in which
the one-dimensional (1D) Mathieu's equations were studied to predict
band gap behaviour. Floquet's work was followed by that of Rayleigh
[2], who developed a similar form to Floquet's theorem. During the
twentieth century, Mead [3,4], Mace et al. [5] and Langley and Cotoni
et al. [6,7] produced mathematical tools based on Brillouin's periodic
structure theory (PST) [8]. Using these methods, researchers have the
ability to predict the vibroacoustic and dynamic performance of several
applications in relatively short times. Application examples are pre-
sented with composite panels and shells [9,10], structures with pres-
surised shells [11], and complex periodic structures [12–15]. Hussein
et al. [16] produced an extensive review of developments in band gap
technology.

There are two major mechanisms that have been identified to gen-
erate band gap behaviour in periodic structures: Bragg scattering and

local resonance. Bragg scattering is observed when a structure exhibits
periodic impedance mismatches and the waves are scattered at the
borders of the unit-cell (the part of the structure that is periodically
repeated). This scattering can be caused by means of inclusions, and
geometrical or material inconsistencies, and leads to the interaction of
the reflected waves with the incoming waves. When specific circum-
stances are met, this interaction causes the partial or complete anni-
hilation of wave propagation [16,17]. It can easily be shown that the
frequency at which the band gap is observed depends on the length and
the material/geometrical mismatch of the unit cell of the periodic
structure. This leads to the need for prohibitively large dimensions to
achieve low frequency band gaps. Therefore, researchers' focus was
shifted to local resonance [18], where a solid core material with rela-
tively high density is usually preferred, suppressed by an elastically soft
material. When this sub-wavelength inclusion/addition resonates, it
exhibits behaviour that cancels the propagation of waves, giving rise to
effective negative elastic constants or group velocities at certain fre-
quency ranges which are significantly lower than those observed in
Bragg scattering. Liu et al. [19] examined the transition between the
two band gap production mechanisms and there has been research on
coupling of the two mechanisms [20,21]. In this work an optimisation
method is developed capable of examining both band gap production
mechanisms, and the Bragg scattering mechanism is observed in case
study geometry to demonstrate its application.

Structures that exhibit band gap behaviour tend to be of
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significantly complex geometry and cannot be realised using conven-
tional manufacturing techniques. Therefore, additive manufacturing
(AM) technologies attract an increasing number of researchers [22].
AM eliminates several design limitations and is currently in extensive
use in research and industry for small-scale production with a wide
variety of manufacturing operations. AM researchers take advantage of
the freedom in design that can be attained with relatively low cost, by
avoiding the manufacturing cost of additional tools. Matlack et al. [21]
examined the broadband vibration absorption of AM meta-structures
exhibiting local resonance, while Qureshi et al. [23] modelled and
manufactured a cantilever-in-mass metamaterial to achieve wave at-
tenuation. Claeys et al. [24] examined, both numerically and experi-
mentally, several versions of a vibroacoustic metamaterial with local
resonance and compared the two sets of results, while Warmuth et al.
[25] used AM methods to manufacture a 3D single phase phononic
band gap material with cellular design exhibiting a wide stop band at
high frequencies. Bilal et al. [26] experimentally observed the tram-
poline phenomenon on the band gap behaviour of AM metamaterial
plates. The wide variety of designs that can be produced using AM
methods has led to the opportunity for researchers to examine 3D band
gaps in complex structures [27,28]. This wide use of AM has led re-
searchers to examine the effect of the property variability of AM on the
experimental results [29,30], where a better agreement was obtained
between analysis and experimental results by considering uncertainties
in the resonators and the host structure.

Efficient and accurate optimisation schemes are essential when
determining design solutions and researchers use several methods. The
optimal design of an Euler-Bernoulli simple band gap beam, made of
linearly elastic material, has been recently examined [31], where the
author used a bound optimisation method which optimised the gap
between natural frequencies. Hussein et al. [32–34] optimised the band
gap behaviour of periodic layered structures, where methods to achieve

band gap behaviour within specific frequencies were developed. More
specifically, Hussein et al. employed a multi-objective genetic algo-
rithm that generates a population of possible solutions and searches for
the optimum one. This method was tailored so that several objectives
were examined, such as the percentage of the band gaps in specific
frequencies, low frequency band gaps and control of the speed of en-
ergy propagation in the structure. Jensen and Sigmund [35] optimised
the band gap behaviour of phononic structures using topology methods.
Langley et al. [7] used a quasi-Newton algorithm with 30 random-start
runs to obtain the optimal vibration absorption of the structure, while
Wormser et al. [27] optimised the phononic band gap behaviour of
cellular structure using gradient based methods. To the authors'
knowledge, all the optimisation methods for phononic band gap be-
haviour focus solely on the band gap tailoring itself.

The novelty of the work presented in this paper is:

• An optimal design of a band gap structure is obtained, so that it
serves both as a stiffener and band gap production mechanism,
constituting a structural part.

• The optimal design of the structure is obtained by applying a de-
veloped computationally efficient unit cell based optimisation
scheme.

• The developed multi-disciplinary design optimisation scheme uses
scalarisation for simultaneous mass and vibration minimisation and
static stiffness maximisation. Several starting points are used and
parametric analysis is completed to evaluate the optimal solution.

More specifically, the multi-disciplinary optimisation of vibration
attenuation through band gap and static structural performance of a 1D
composite structure with powder bed fusion of polyamide 12 (PA12)
material additions is examined. The structure is modelled using finite
element (FE) method and PST is used for predicting its wave

Nomenclature

βi design parameters
f force vector
q physical displacement vector
R transformation matrix
η loss factor
λi eigenvalue corresponding to frequency fi
I identity matrix
M, K and C mass, stiffness and damping matrices of the unit cell
m, k and c local mass, stiffness and damping matrices of the in-

dividual finite elements
p design parameter vector
x right eigenvector
� p( ) objective cost function
ω angular frequency
ρ mass density

εx propagation constants in the x direction
ai, bi, ci, di design cost coefficients
b g_ band gap
b g_ _m f band gap mid-point frequency
b s_ stiffener's bending stiffness
E, Ex , Ey, Ez Young's moduli
fi frequency
G G G, ,xy xz yz shear moduli
kx wavenumbers in the x direction
Lx length of the unit cell
ltop length of the top of the stiffener
m mass
t time
tst stiffener's thickness
v v v, ,xy xz yz Poisson's ratios

Fig. 1. Several schemes of periodic structures.
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