Accepted Manuscript

Failure of cross-ply NCF composites under off-axis compressive loads - An experimental study and a new strength prediction model including fibre bundle waviness

Anton Shipsha, Magnus Burman, Johan Ekh

PII: \$1359-8368(17)34437-2

DOI: 10.1016/j.compositesb.2018.06.022

Reference: JCOMB 5752

To appear in: Composites Part B

Received Date: 24 December 2017

Revised Date: 4 May 2018
Accepted Date: 16 June 2018

Please cite this article as: Shipsha A, Burman M, Ekh J, Failure of cross-ply NCF composites under off-axis compressive loads - An experimental study and a new strength prediction model including fibre bundle waviness, *Composites Part B* (2018), doi: 10.1016/j.compositesb.2018.06.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Failure of cross-ply NCF composites under off-axis compressive loads an experimental study and a new strength prediction model including

fibre bundle waviness

Anton Shipsha^{a,*}, Magnus Burman^a, Johan Ekh^b

^aDepartment of Aeronautical and Vehicle Engineering, KTH Royal Institute of Technology, Teknikringen 8, SE-100

44 Stockholm, Sweden

^bDepartment of Technology Consulting/Applied Mechanics, ABB AB Corporate Research, Forskargränd 7, SE-72178,

Västerås, Sweden

Abstract

The design of reliable and efficient mechanical joints with non-crimp fabric (NCF) composites depends

on several factors but knowledge on actual loading direction and an accurate compressive strength

prediction is essential. Motivated by this, the current study is focused on the compressive strength of

cross-ply NCF composites and the influence of fibre orientation in relation to the loading direction.

Possible influence of stacking sequence on the compressive strength is also studied. Compression tests

of cross-ply NCF composite laminates that are loaded at various off-axis angles are performed and the

failure mechanisms are identified. An analytical semi-laminar based model for strength prediction of

NCF composite laminates loaded in compression is then suggested. The models take in- and out-of-

plane bundle waviness into account. Good agreement between the proposed model and the experiments

is observed.

Keywords: A. Fabrics/textiles, B. Strength, C. Analytical modelling, D. Mechanical

testing

2010 MSC: 00-01, 99-00

1. Introduction

Non-crimp fabrics, NCFs, are dry textile preforms with one or several layers of oriented fibre

tows. The layered tows are stitched together with a thin yarn. NCF preforms are commonly found in

combinations of 0° , 90° and $\pm 45^{\circ}$ oriented plies and with areal weights ranging from below $100 q/m^2$

to over $1000q/m^2$.

NCF composites are heterogeneous on several scales as can be observed in Fig. 1. On micro-

and macro-levels the NCF composites could be said to be similar to UD prepregs, i.e. straight and

*Corresponding author

Email address: shipsha@kth.se (Anton Shipsha)

Download English Version:

https://daneshyari.com/en/article/7211756

Download Persian Version:

https://daneshyari.com/article/7211756

<u>Daneshyari.com</u>