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A B S T R A C T

An interface model of homogenization was proposed, this model considers the influence of the inclusions size of
the micrometre range on the elastic properties of composites. The appearance of surface strains and shear
stresses at the interphase boundary is associated with the "sticking" of the matrix to the surface of the inclusions.
The effective modulus of elasticity of a composite is the sum of two terms: a constant part in the form of a
modulus of elasticity of a bulk material, and a variable part that is caused by a shift at the interphase boundary
and depends on the particles size. Absolute of particles sizes were considered by introducing within the inter-
facial model empirical elasticity modulus of the composite with the one basic particle size. The results of the
calculation are in good agreement with the experimental data for Young's modulus of polymer composites with
spherical particles.

1. Introduction

The development of new composite materials is closely related to
the problem of theoretically forecasting macroscopic or effective
properties from the known properties of components and their contents.
In the analytical description of the properties of structurally in-
homogeneous materials, mean-field theories are commonly used as
models of homogenization. The stress and strain fields are statistically
averaged, and thus the heterogeneous material is replaced by a
homogeneous continuum with a uniform stress–strain state. The main
structural factors that affect the properties of composites are the vo-
lume fraction, shape, orientation, and particle size. The classical models
of homogenization allow us to describe quite accurately the de-
pendences of elastic properties on the content, shape, and orientation of
nonspherical particles, but cannot reflect the influence of particle size.
At the present time, various interface models are used to describe di-
mensional effects in micro inhomogeneous materials.

In these interface models, the dependence of the elastic properties of
heterogeneous materials on particle size is associated with strains and
stresses that are localised at the interphase boundary. Two types of
model are used to simulate the properties of the interphase region. In
the first type – common boundary or interface models – the dis-
continuities of displacements and/or stresses are directly connected at
the common boundary of the phases; the interphase region is assumed
to occupy zero volume. Among the interface models, the linear spring
model [1–7] and the interface stress model [6–12] are distinguished.

The second type of model describes the interphase region as an inter-
phase layer that links the particle and the matrix [6,7,13–17]. Moduli of
elasticity of the interphase differ from the matrix and particles, and can
be homogeneous or variable. Interface models are two-phase models in
the sense that the interface region occupies a zero volume fraction. The
interphase model is three-phase, consisting of the inhomogeneity, the
interphase and the matrix.

As a rule, interface models are used for nanostructured materials.
The defining equations of the interface models contain a new non-
classical parameter – the internal length lin, which represents the ratio
of the surface elastic constant to the bulk elastic constant [18].
Homogeneous nanostructured materials are characterized by a single
surface elastic constant and one internal length. An elastic constant can
be found by atomistic modeling. For two-phase composites, the elasti-
city of an isotropic surface is characterized by two surface elastic
constants giving two internal lengths. For heterogeneous materials,
atomistic modeling is very difficult and time-consuming [19]. There-
fore, atomistic modeling is applicable only to homogeneous nanos-
tructured materials. Since the moduli of elasticity of the interface of
heterogeneous materials can not be calculated, they are found from
experimental data [20].

The dependence of the elastic properties of nanostructured mate-
rials on the dimensions of inhomogeneities is described in the form of
scaling laws [7,19,21,22]. The scaling law of elastic properties includes
the ratio of the internal length lin to the characteristic size of the in-
homogeneities of R. For metals and some other materials, lin usually lies
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within 0.01–0.1 nm and interphase models give a good prediction for
inhomogeneities with a size R=3–5 nm [19]. At sizes of in-
homogeneities in excess of 50 nm, the size effect is not described by the
interface models [11,19].

To describe the elastic properties with dimensions of in-
homogeneities in the micrometre range, interphase layer models are
used. Interphase models are various modifications of the three-phase
Christensen-Lo model [23]. In contrast to interface models, in the in-
terphase models, classical elastic constants of the interphase are con-
sidered. To estimate the effective moduli of elasticity of composites, it is
necessary to know the dimensions and elastic moduli of the interphase.
Interphases were experimentally found in cement composites and other
composite materials [17]. The dimensions of the interphase can be
determined directly from the results of microstructural studies. For
example, the thickness of the interphase around the aggregate particles
in concrete is 10–40 μm [24]. Modules of elasticity of the interphase are
adjustable parameters and are determined during the processing of
experimental data.

In interphase models, the elastic properties of composites are de-
scribed within the modified classical models. Under modification the
known models are supplemented with new parameters reflecting the
properties of the interphase region. Identification of new parameters is
performed by the results of experimental studies of the elastic proper-
ties of composites with different sizes of particles. The number of di-
mensions and the laboriousness of the experiment are determined by
the number of model parameters.

The interphase layer model was used in Ref. [25]. It was assumed
that a strong interphase layer forms on the surface of the spherical
particle, which leads to an increase in the effective volume fraction of
particles and thus the Young's modulus. On the basis of experimental
data, an almost linear dependence of the effective volume fraction on
the radius of particles was obtained. To calculate the Young's modulus,
a modified Kerner model was used, which includes both the real and
effective volume fraction of the particles. To identify the parameters of
a linear relationship, experimental data are needed for two sizes of
particles. In the model in Ref. [25], there is no physical justification for
the linear dependence of the effective volume fraction on the particle
radius, and the result can be random. In Ref. [26], a model of the in-
terphase layer was used to describe dimension-dependent elastic
properties. The calculated equations contained three adjustable para-
meters: two characteristic lengths of cohesive phase interactions, and
one parameter of adhesion properties of the contacting phases. As a
result, it is necessary to have experimental data for three sizes of par-
ticles.

In the present work, to describe the effect of the particle size of
micrometre scale, an interface model of the common boundary and a
physical analogy with the laminar flow of a liquid near a solid wall
were considered. In contrast to the known interface models with non-
classical elasticity parameters, the proposed model uses the classical
elasticity parameters. The calculated dependencies contain one ad-
justable parameter, and the model is identified by the results of the
experiment with one size of the particles.

2. Theory and computational dependencies

2.1. The model of elastic phase strain at the interphase boundary

Interface models assume discontinuities of displacements and/or
stresses at the phase boundary. We will consider two-phase composites
with ideal adhesion of the matrix and particles. For ideal adsorption,
the displacement field will be continuously along the interface. In this
case only tangential surface strains and stresses have non-zero values
[27]. Normal components of strains and stresses are considered for
jumps of displacements at the interphase boundary [27]. Jumps of
displacements appear at break of adhesion bonds and are typical for
brittle composites [28,29]. Based on the results of the research

[27,30,31], only tangential surface strains and stresses of adhesion will
be considered. Based on the results of [27,30,31], assuming ideal ad-
hesion, we will only consider tangential surface strains and stresses.

We will consider the effect of surface strains and stresses on the
elastic properties of composites on the simplest example of calculating
the effective Young's modulus using the Takayanagi model [32]. The
representative cell of an isotropic two-phase composite has the shape of
a cube with a cubic particle (Fig. 1). A strain ε of the stretching is
specified on the upper cell face.

A representative cell consists of two parallel elements I and II. The
two-phase element I is formed by the particle 2 and the fragment of the
matrix 1, which are connected in series. The volume of matrix 1 un-
dergoes strain ε1. Strain of the volume of particle is ε2. The single-phase
element II is formed only by the matrix 1 and its volume stress is equal
to the strain of the cell ε. The effective Young's modulus of the re-
presentative cell will be equal to =E σ ε/ , where σ is the stress of the
cell. In the classical Takayanagi model, the elements I and II are de-
formed independently of each other and the tension of the cell is

= +σ σ S σ S
S

,0
1 1 2 2

(1)

where σ1 and σ2 are tensile stresses in the volumes of elements I and II;
and S1 and S2 are the cross-sectional area of the elements I and II; and S
is the area of the upper face of the cell.

Let's consider cell deformation under the condition of ideal adhesion
of elements I and II. With ideal adhesion, the strain of the matrix at its
vertical boundary with particle will be equal to the strain of the particle
ε2. At the same time, the strain of the boundary volumes of the matrix is
ε, and >ε ε2. As a result, the surface of the matrix at its boundary with
particle is under shear strain γ12 of magnitude

= −γ ε ε .12 2 (2)

The shear stress τ12 at the vertical boundary of the matrix/particle
will be:

= −τ μ ε ε( ),12 1 2 (3)

where μ1 is the shear modulus of the matrix. Similarly, the vertical
surface of the matrix in the element I deforms and this surface under-
goes a shear strain γ11

= −γ ε ε.11 1 (4)

The shear stress τ11 on the vertical matrix/matrix boundary will be:

= −τ μ ε ε( ).11 1 1 (5)

We perform the summation of the stresses τ11 and τ12 over the area
and find the shear force Fτ on the vertical boundary of the elements:

= +F τ S τ S ,τ τ τ11 1 12 2 (6)

where Sτ1 and Sτ2 are the areas of vertical matrix/matrix boundaries and
matrix/particle, respectively. We assign the force Fτ to the area of the
upper face of the cell and determine the normal stress:

Fig. 1. Takanyagi model for a two-phase isotropic composite.
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