Accepted Manuscript

Structural behaviour of hybrid glass beams with T cross-sections

Giuseppe Campione, Francesco Cannella

PII: \$1359-8368(18)31088-6

DOI: 10.1016/j.compositesb.2018.06.008

Reference: JCOMB 5738

To appear in: Composites Part B

Received Date: 6 April 2018
Revised Date: 21 May 2018
Accepted Date: 6 June 2018

Please cite this article as: Campione G, Cannella F, Structural behaviour of hybrid glass beams with T cross-sections, *Composites Part B* (2018), doi: 10.1016/j.compositesb.2018.06.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

STRUCTURAL BEHAVIOUR OF HYBRID GLASS BEAMS WITH T CROSS-SECTIONS

*Giuseppe Campione & Francesco Cannella

*Ph.D. Full Professor at Department of Civil, Environmental, Aerospace and Material Engineering (DICAM), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy. Tel. (+39)-091-6568437, fax (+39)-091-6568407-e mail:giuseppe.campione@unipa.it

Abstract

An experimental investigation regarding the flexural and the shear behaviour of glass beams with length 900, 1300, 1700 mm and T cross-section is presented and discussed. T cross-sections were obtained by assembling glass web and glass flange. Some specimens were also reinforced internally in the web with steel plates of thickness 6 mm and depth 25 and 50 mm placed at the bottom portion of the beams for the entire length of the beams themselves. Three specimens for each investigated series were tested in flexure focusing on the flexural and shear response through the determination of the load-deflection curves and the crack patterns at rupture identifying the effects of steel plates. The shear span to depth ratios a/d were 2, 3 and 4, respectively. A simple model is also presented for a preliminary design of composite glass beams able to predict the ultimate load including limit states due to glass cracking, flexural failure with glass crushing or plates yielding, shear compression and diagonal tension failure.

The resistance is obtained from equilibrium conditions of a portion of beam enclosed between the support and shear span, taking also into account the presence of steel plates. The model is able to reproduce experimental results to the varying of the geometrical characteristics of beam, of the

Key words: Glasses; Adhesion; Mechanical testing; Assembly.

reinforcement area and on the type of reinforcement.

Download English Version:

https://daneshyari.com/en/article/7211811

Download Persian Version:

https://daneshyari.com/article/7211811

<u>Daneshyari.com</u>