Accepted Manuscript

Quantitative analysis of QSI and LVI damage in GFRP unidirectional composite laminates by a new ultrasonic approach

Anna Castellano, Aguinaldo Fraddosio, Mario Daniele Piccioni

PII: \$1359-8368(18)30719-4

DOI: 10.1016/j.compositesb.2018.06.003

Reference: JCOMB 5733

To appear in: Composites Part B

Received Date: 4 March 2018
Revised Date: 3 June 2018
Accepted Date: 3 June 2018

Please cite this article as: Castellano A, Fraddosio A, Piccioni MD, Quantitative analysis of QSI and LVI damage in GFRP unidirectional composite laminates by a new ultrasonic approach, *Composites Part B* (2018), doi: 10.1016/j.compositesb.2018.06.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Quantitative analysis of QSI and LVI damage in GFRP unidirectional composite laminates by a new ultrasonic approach

Anna Castellano^{a,*}, Aguinaldo Fraddosio^b, Mario Daniele Piccioni^b

^aDepartment of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy

^bDepartment of Civil Engineering Sciences and Architecture, Polytechnic University of Bari, Bari, Italy

E-mail address:

^a,*anna.castellano@poliba.it, ^baguinaldo.fraddosio@poliba.it, ^bmariodaniele.piccioni@poliba.it

Abstract

Our work is focused on a new experimental approach for the comparison between Quasi Static Indentation (QSI) damage and Low-Velocity Impact (LVI) damage in polymer composites starting from the results of ultrasonic goniometric immersion tests. In particular, the comparison is performed through the analysis of the additional anisotropy induced by the damage in unidirectional Glass Fiber-Reinforced Polymer (GFRP) composites due to QSI and LVI damage tests performed with a low level of the employed energy. To this aim, we ultrasonically reconstruct the acoustic curves (velocity curves and slowness curves) before and after the damage. Ultrasonic experiments are performed by using a goniometric ultrasonic immersion device designed and built at our laboratory, aimed at the mechanical characterization of anisotropic materials. We highlight differences and similarities between QSI and LVI damage starting from the analysis of the variations of the acoustic behavior and by using a suitable anisotropic damage model developed in the framework of the Continuum Damage Mechanics theory. The proposed experimental approach can be suitably developed for in situ investigations on low-velocity impact damage in polymer composite components.

Keywords:

- A. Low Velocity Impact test
- B. Quasi Static Indentation test
- C. Damage induced anisotropy
- D. Continuum Damage Mechanics

Download English Version:

https://daneshyari.com/en/article/7211817

Download Persian Version:

https://daneshyari.com/article/7211817

Daneshyari.com