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A B S T R A C T

Thin-walled structures hold primacy among modern engineering structures. All the advantages offered by the
curved geometry and thinness of the walls come even more to the fore when combined with exquisite properties
of fiber-reinforced composite laminates. Directionally dependant material properties open vast possibilities for
tailoring global structural properties and, therewith, optimization. Successful design of such structures calls for
high performance shell type finite elements. This paper presents a linear triangular shell element based on the
equivalent single-layer approach and the first-order shear deformation theory. The shear locking effect is re-
solved by the descrete shear gap (DSG) approach combined with the cell smoothing technique. To improve the
element performance with respect to the membrane behavior, the assumed natural deviatoric strains (ANDES)
formulation is applied, with necessary modifications to meet the requirements of curved structures with ani-
sotropic material properties. Geometric nonlinearities are addressed by the co-rotational formulation. Examples
demonstrate the element applicability and performance.

1. Introduction

With a roughly estimated share of some 80%, thin-walled structures
make the group of most commonly encountered engineering structures.
This is clearly the consequence of numerous advantages they offer. The
thinness of the walls combined with the curved geometry allows the use
of high membrane stiffness to carry transversely applied loads. In this
manner, a favorable load-to-weight ratio is achieved. The advantages
provided by the geometry are further enhanced through application of
modern engineering materials, primarily fiber-reinforced composite
(FRC) laminates. FRC laminates provide outstanding mechanical
properties combined with further weight saving. Also, directionally
dependent properties intrinsic for composites make possible tailoring of
structural properties already on the material level.

The research on FRC laminated structures is quite diverse, ranging
from the work on their general improvements to the work on failure
models, detection and localization. As a possibility for further im-
provement of already exquisite material properties, a number of re-
searchers considered the use of functionally graded materials [1,2,3].
At the same time, a great potential for improvement of general struc-
tural properties was seen in application of multi-functional materials,
such as piezoelectric materials, which allow active control of their
mechanical behavior [4]. Consequently, a great deal of work was

dedicated to the development of modeling tools for active composite
laminates [5,6,7,8]. On the other side of the research spectrum, due to
the proneness of FRC laminates to hidden failures including delami-
nation, research efforts strived to provide reliable models for inter-
laminar damage and failure of FRC structures, as presented in the
survey by Rohwer [9]. Also, methods were developed with the aim of
non-destructive damage detection and localization [10,11]. This rather
short glimpse at the research scope related to the composite laminate
structures serves only to give a general impression about the attrac-
tiveness of the topic.

Accurate and reliable modeling and simulation are the prerequisites
of successful research in all the above mentioned research directions.
Most frequently the Finite Element Method (FEM), as the method of
choice in the field of structural analysis, is used for the purpose.
Depending on the research field, models of various complexity and
detail levels may be required. This work puts focus onto the global
structural behavior. Bearing this in mind, the main workhorse elements
in FEM programs are equivalent single-layer shell elements based either
on the classical first-order theory (Kirchhoff-Love elements) or the first-
order shear deformation theory (Reissner-Mindlin elements). The latter
is more general as it includes the consideration of transverse shear ef-
fects, which is a rather important aspect for composite laminates.
However the main reason why most elements are based on it relies
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primarily on the reduced continuity requirements from the FE shape
functions. The family of degenerate shell elements is a large group of
shell elements based on the Reissner-Mindlin kinematics and most of
them have also been applied for modeling laminate composite struc-
tures [12,13,14]. The basic advantage of this element group is the ap-
plicability to a relatively wide range of thickness and curvatures.
However, they are limited in the aspect of strain and stress recovery in
case of laminate structures. Layer-wise theories [15,16], offer a remedy
with respect to the stress/strain recovery, but this positive aspect is
accompanied by an increased numerical effort. As a well-balanced
compromise, Carrera et al. [17] and Valvano and Carrera [18] proposed
finite elements with node-dependant kinematics. The approach com-
bines the equivalent single-layer approach and the layer-wise approach.
The basic idea is to apply the latter locally in order to provide the
adequate accuracy in the structural sub-domains where the strains and
stresses are of interest. Finally, the recently proposed isogeometric
approach addresses the problem of seamless integration of design and
analysis. The basic idea behind it resides in the use of the same shape
functions (NURBS) for both the description of CAD geometry and dis-
placement field of the FE model. Isogeometric developments for com-
posite plates and shells involved the Kirchhoff-Love, Mindlin-Reissner
and higher order kinematics [19,20,21,22].

Obviously, the development of finite elements for shell structures
and particularly those made of composite laminates has attracted a
great deal of interest. This paper aims at a high performance triangular
shell element based on the first-order shear deformation theory.
Geometric nonlinearities are addressed by means of the co-rotational
formulation.

2. Triangular shell element

The obvious advantages offered by linear triangular elements are
the exquisite meshing ability and very high numerical efficiency re-
garding the computation of matrices and vectors for a single element.
As usual, advantages are accompanied by certain disadvantages. Not
only may the convergence rate be rather slow due to the ability of the
classical linear 3-node element to represent only constant strain and
stress states, but the element is also susceptible to the notorious shear
locking possibly causing convergence to an erroneous, stiffer solution.
To resolve these issues and produce a high performance element, both
the bending and membrane behavior of the element will need to be
properly modified.

In the element formulation, both the global (x, y, z) and local ( ′x , ′y ,
′z ) coordinate systems are used, Fig. 1. The local coordinate system is
defined so that the ′z -axis is perpendicular to the element surface, while
one of the in-plane axes, the ′x -axis, is oriented from element node 1
toward element node 2.

The element employs the classical linear shape functions:
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where ′xi and ′yi ( =i 1,2,3), are the local coordinates of the element
nodes, A is the element surface area and xij

i and ′yij denote the abbre-
viated coordinate differences, i.e. ′ = ′ − ′x x xij i j and ′ = ′ − ′y y yij i j . The
element geometry is simply regenerated from its mid-surface:
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where h is the element thickness and ξ the natural coordinate
(− < < +ξ1 1) in the thickness direction. As a consequence of the
degeneration process (from 3D to 2D) and the assumed Reissner-
Mindlin kinematics, the displacement field ′ ′ ′u v w{ , , }T in the local co-
ordinates is given by:
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where ′θx and ′θ y are the rotations around the local ′x - and ′y -axes and i
in the right subscript denotes the node number.Up to this point, all the
equations fit into the classical formulation. However, as already dis-
cussed above, the strain field directly derived using the kinematic re-
lations produces a too stiff element that suffers sub-optimal con-
vergence or even a convergence toward an erroneous solution. Hence,
special techniques are needed as a remedy. Since a flat element is
considered here, its deformational behavior can be represented as a
superposition of plate and membrane elements. The development pre-
sented here implements already existing solutions for both bending and
membrane behavior, but it represents a novel combination of those
solutions. In what follows, the basic ideas and most important formulae
are given as the available literature that is referenced below provides
the necessary details.

2.1. Plate behavior

Since the element is based on the first-order shear deformation
theory, the stiffness matrix of the plate element consists of the bending
stiffness and transverse shear stiffness. Using the discretized displace-
ment field (Eq. (3)), the bending strains with respect to the local co-
ordinate system are directly derived:
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thus yielding the corresponding strain-displacement matrix B[ ]pb in the

Fig. 1. Element geometry, coordinate systems and material architecture.
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