Accepted Manuscript

Probabilistic modelling of tool unbalance during cutting of hard-heterogeneous materials: A case study in Ceramic Matrix Composites (CMCs)

O. Gavalda Diaz, D.A. Axinte, D. Novovic

PII: \$1359-8368(18)30210-5

DOI: 10.1016/j.compositesb.2018.04.029

Reference: JCOMB 5637

To appear in: Composites Part B

Received Date: 18 January 2018

Revised Date: 26 March 2018

Accepted Date: 9 April 2018

Please cite this article as: Diaz OG, Axinte DA, Novovic D, Probabilistic modelling of tool unbalance during cutting of hard-heterogeneous materials: A case study in Ceramic Matrix Composites (CMCs), *Composites Part B* (2018), doi: 10.1016/j.compositesb.2018.04.029.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Probabilistic modelling of tool unbalance during cutting of hard-heterogeneous materials: a case study in Ceramic Matrix Composites (CMCs)

O. Gavalda Diaza, D.A. Axintea,*, D. Novovicb

^aRolls-Royce UTC in Manufacturing and On-Wing Technology, Faculty of Engineering, University of Nottingham, NG8 1BB, UK

^bManufacturing Technology, Rolls-Royce Plc, DE24 8ER, UK

Abstract

Compared to other materials, CMCs display a unique high hardness and heterogeneous nature which are critically reflected during the drilling process where asymmetrical high forces are suffered by the tool, resulting in an unbalance of the drill bit. Hence, this study proposes a mechanistic approach where the hard nature resulting in high radial forces is analytically studied and coupled with a probabilistic model where the heterogeneous nature of CMCs is taken into consideration. This theoretical study results in an in-depth understanding of the loading unbalance occurring on different tool sizes during drilling of CMCs which can lead to a premature tool breakage. The nature of this unique force that is assumed in the theoretical approach to influence the cutting of hard-heterogeneous materials is experimentally validated by drilling a homogeneous and a heterogeneous hard ceramics, i.e. a monolithic SiC and a SiC/SiC CMC. Moreover, the model developed together the with drilling experiments with different tool diameters result in an understanding of why small tool diameters suffer a premature tool breakage when drilling difficult-to-machine CMCs.

Keywords: Machining, Ceramic Matrix Composites, Instabilities, Heterogeneous materials, Hard materials 2015 MSC: 00-01, 99-00

1. Introduction

Ceramic Matrix Composites (CMCs) are a material choice as replacement to selected high temperature metallic alloys in the aerospace industry [1] and are under consideration for nuclear application [2]. This success in high-value components is due to its high mechanical and chemical performance in severe environments, especially at high temperatures. Non-oxide CMCs are normally formed by ceramic fibres (e.g. SiC or C fibres) embedded in a ceramic matrix (e.g. SiC, C or Si_3N_4), producing a ceramic reinforced ceramic which results in an improved fracture toughness compared to monolithic ceramics [3]. The increase in demand of these materials in high-value sectors

Several non-conventional machining techniques have been experimentally tested in hard CMCs [6]. Pulsed Laser Ab-

has developed the need of understanding and optimising the machining process. Nevertheless, due to its heterogeneous and hard nature, the mechanical machining can be challenging, in particular when small tools need to withstand high cutting forces. Several authors reported short tool life when mechanically machining CMCs [4]; as such, it was concluded that micro-holes could not be machined in hard CMCs probably due to the poor surface quality achieved and the premature tool breakage [5]. Nevertheless, an in-depth analysis of the phenomena occurring when machining hard-heterogeneous CMCs and how the tool size can be affected by the material heterogeneous structure has not yet been reported in the literature.

^{*}Corresponding author

Email address: Dragos.Axinte@nottingham.ac.uk (D.A. Axinte)

Download English Version:

https://daneshyari.com/en/article/7211914

Download Persian Version:

https://daneshyari.com/article/7211914

<u>Daneshyari.com</u>