Accepted Manuscript

Mechanical properties and abrasive wear of white/brown coir epoxy composites

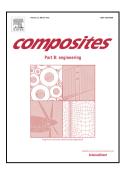
Petr Valášek, Roberto D'Amato, Miroslav Müller, Alessandro Ruggiero

PII: \$1359-8368(18)30342-1

DOI: 10.1016/j.compositesb.2018.04.003

Reference: JCOMB 5611

To appear in: Composites Part B


Received Date: 29 January 2018

Revised Date: 19 March 2018

Accepted Date: 3 April 2018

Please cite this article as: Valášek P, D'Amato R, Müller M, Ruggiero A, Mechanical properties and abrasive wear of white/brown coir epoxy composites, *Composites Part B* (2018), doi: 10.1016/j.compositesb.2018.04.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Mechanical properties and abrasive wear of white/brown coir epoxy composites

Petr Valášek^a, Roberto D'Amato^b, Miroslav Müller^a, Alessandro Ruggiero^c,

^aCzech University of Life Sciences Prague, Faculty of Engineering, Department of Material Science and Manufacturing Technology, Prague, Czech Republic

Abstract.

A substitution of synthetic fillers by natural fillers decreases an environmental burden, namely both in terms of saving fossil sources, and of a minimization of energy demands on a preparation of a reinforcement for composite systems. Last but not least the natural fibres are available and so they decrease a price of a final product. Performed experiment describes strength characteristics of white and brown coir fibres and biocomposites with the synthetic matrix and these fibres prepared by a vacuum infusion. Water solution of NaOH (6%, 12h) was used for treating of the fibre surface. The strength characteristics of the fibres differ depending on time of their harvesting – the tensile strength of previously harvested white fibres reached 115 MPa, the tensile strength of brown coir fibres harvested in a full maturity of the coconuts reached 123 MPa. The chemical treatment of the fibres led to roughening of the surface and to an improvement of an interfacial interaction. The chemical treatment of the fibres also led to the increase of their tensile strength up of 58 MPa (brown fibres) and the modulus was increased of 1.87 GPa on average. Globular formations on the surface of the fibres were removed due to the alkali acting. Layers of lignin were reduced which led to an improvement of the interaction with used epoxy resin. The inclusion of chemically treated brown fibres increased the matrix strength of 28.64 MPa, the inclusion of white fibres of 20.22 MPa.

^bUniversidad Politecnica de Madrid, Departamento de Ingeniería Mecánica, Spain

^cUniversity of Salerno, Department of Industrial Engineering, Salerno, Italy

Download English Version:

https://daneshyari.com/en/article/7211974

Download Persian Version:

https://daneshyari.com/article/7211974

Daneshyari.com