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A B S T R A C T

Double layered graphene sheets (DLGSs) have attracted increasing attention due to its unique excellent prop-
erties. The present work studies the geometrically nonlinear vibration behavior of DLGSs using von Kármán plate
model incorporated with nonlocal elasticity theory accounting for the small scale effect. The element-free kp-
Ritz method is then employed to solve the obtained coupled partial differential equations. The effectiveness of
the present nonlocal element-free kp-Ritz method is verified through comparison with the published results. The
influence of side length, boundary condition, aspect ratio and nonlocal parameter on the geometrically nonlinear
vibration behavior of DLGSs are investigated. Ultimately, it is found that the effect of boundary conditions, side
length, aspect ratio and nonlocal parameter can approximately be neglected, when compared with that of vdW
interaction which exists between adjacent layers of DLGSs.

1. Introduction

Due to their novel mechanical, thermal, chemical, physical and
electronic properties [1], graphene sheets (GSs) have attracted a great
deal of attention of scientific community since Novoselov et al. [2]
separated them from bulk graphite. All these excellent properties make
GSs the most prominent new materials for the next generation Nano-
electronic devices used in nano optomechanical systems (NOMS),
Nano-electromechanical systems (NEMS) and Micro-electromechanical
systems (MEMS), including high frequency resonators, mass and che-
mical sensors, semiconductor devices and vibration isolation systems
etc..

Recent years have witnessed the importance of hydrogen which can
satisfy all foregoing demands as a clean and high-density energy re-
source. However, there still remain many challenges regarding to its
storage. Under this circumstance, nanomaterials, especially graphene,
have been found to have outstanding potential in reserving hydrogen
[3].

Being combined with other materials, graphene can show great
potential in various areas. For instance, combining graphene and
porous materials leads to porous graphene materials, which possess
large surface areas, diversified compositions, excellent electronic con-
ductivity and distinctive porous structures. Thus, it can be applied in
high-performance electrochemical energy storage and transformation
devices, say, fuel cells, supercapacitors, and lithium ion batteries [4].
Apart from porous materials, graphene can also be combined with

semiconducting nanostructures. Take semiconducting nanowires for
example, growth of on graphene on which would provide remarkable
platform for solar cells with higher transparency, better flexibility and
upgraded stability. Park et al. [5] pointed out that for the ZnO nano-
wire-based P3HT architecture, the efficiencies equal or exceed those
reported previously for similar ITO-based devices. Furthermore, by
combining the properties of both graphene and polymer, graphene-
based polymer nanocomposites exhibit superior physicochemical
properties. For example, it can serve as the key functional nanomater-
ials for electronic device applications by combining graphene with
semiconductor conjugated polymers (CPs).

To have a better understanding of their mechanical properties, re-
searchers have conducted extensive research on the dynamic behaviors
of GSs. Although there are experimental and theoretical methods in
studying GSs, theoretical methods are utilized in most of the papers.
That is because conducting controlled experiments at the nanoscale is
both extremely formidable and prohibitively expensive [6].

In theoretical modeling of nanostructures, the quantum mechanics
e.g. ab initio and density functional theory (DFT) [7], molecular me-
chanics/dynamics (MD) [8], atomistic-continuum mechanics e.g. mul-
tiscale modelling [9], and continuum mechanics [10] have been used to
carry out the theoretical characterization of GSs. However, due to the
considerable computationally expenses of nano-structures analyses
when adopting these atomistic modeling, there are more and more at-
tention being attracted to the continuum mechanics. Nevertheless, be-
cause of the structural discreteness and small scale effect, it is
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questionable to employ the traditional continuum models to describe
GSs. Thus, many elasticity theories have been proposed to account for
the small scale effect, e.g. nonlocal elasticity theory [11], modified
strain gradient elasticity [12], and modified couple stress theory [13].
Among these theories, nonlocal elasticity theory is the most widely
reported theory in which it is assumed that stress state at a point in the
continuum depends on strain state at all points of the continuum rather
than uniquely on strain state at that point in classical continuum the-
ories. Since Peddieson et al. [14] first applied nonlocal elasticity theory
to formulate a nonlocal Benoulli/Euler beam model, more and more
researchers have employed nonlocal-continuum theories to describe
and analyze the mechanical behaviors of GSs. It should be noted that
Wang et al. [15–17] have done some works on the application of non-
local theory in microstructure and written a literature survey article in
this research topic.

Pradhan and co-workers [18] used nonlocal continuum plate model
based on classical plate theory (CLPT) and the first order shear de-
formation theory (FSDT) to investigate the vibrational characteristics of
single-layer graphene sheets (SLGSs) and bilayer graphene sheets
(BLGSs) having isotropic properties. Wang et al. [19] employed a
nonlinear continuum model to analyze the multilayer GSs, in which the
nonlinear van der Waals (vdW) interactions between the two adjacent
layers are considered through Lennard-Jones potential. Arash and
Wang [20] studied free vibration of SLGSs and BLGSs by using nonlocal
continuum theory and Molecular dynamic (MD) simulations. The
thermal effects on the vibration properties of the double-layered na-
noplates were investigated by Wang et al. [21]. Using the nonlocal plate
model with consideration of geometric nonlinearity in the von Kármán
sense, Shen et al. [22] investigated the nonlinear transverse vibration
response of BLGSs in thermal environments and estimated the small
scale parameter by matching the natural frequencies of GSs obtained
from nonlocal plate model with the results observed from the MD re-
sults. Based on the nonlocal continuum plate theory, Jomehzadeh and
Saidi [23] investigated the small scale effect on the large amplitude
vibrational behaviors of multilayered GSs, in which the coupled non-
linear partial differential equations of motion are derived using Ha-
milton's principle. A nonlocal elasticity plate model was developed to
investigate the vibrational behaviors of embedded multilayered GSs
under different boundary conditions by Ansari et al. [6]. Based on
nonlocal theory, Hashemi et al. [24] simulated the vibration of double
GSs coupled by an enclosing viscoelastic medium which is simulated as
a Visco-Pasternak layer.

It is partial differential equations that need to be solved when using
nonlocal continuum model to analyze nanostructures. To some pro-
blems with simple boundary conditions, the analytical or Navier solu-
tion can be obtained. For example, based upon nonlocal continuum
mechanics, Pradhan and Phadikar [14] derived a Navier solution for
the vibrational analysis of embedded MLGSs with all edges simply
supported. Shen et al. [25] adopted a two-step perturbation approach to
obtain the panel load-deflection and load-bending moment curves of
FG-GRC laminated cylindrical panels under a transverse uniform or
sinusoidal load. Contrastively, to the other problems with complex
boundary conditions in which exact solutions cannot be obtained, the
numerical solution techniques can play an important role [26]. Pha-
dikar et al. [27] employed Galerkin finite element method (FEM) to
study the vibrational behaviors of nanobeams and nanoplates. Ad-
ditionally, Mianroodi et al. [28] utilized the finite difference method
(FDM) to investigate the nonlinear vibrational properties of SLGSs.
Besides FEM and FDM, the generalized differential quadrature (GDQ)
method [29] also plays an important role in the advancement of na-
notechnology [30]. Ansari et al. [30] used GDQ method to conduct
nanoscale vibration analysis of embedded multilayered GSs and
claimed that the GDQ method holds promise for yielding highly accu-
rate solutions and is computationally more efficient than the finite
difference and finite element methods. Element-free methods have the
advantage of relying only on nodes instead of element, is increasingly

adopted to investigate various engineering problems [31]. Among the
various element-free methods, element-free kp-Ritz method which
constructs the discretized equations and shape functions respectively
based on Ritz method and kernel particle method, is first proposed by
Liew et al. [32] and has been employed to solve many engineering
problems [33–37]. Zhang et al. [38–40] have successfully applied the
element-free method to deal with various functional composite pro-
blems. However, to the best of the author's knowledge, the element-free
kp-Ritz method has not been utilized to investigate the geometrically
nonlinear vibration of BLGSs considering the nonlinear vdW forces
between layers. In present work, we employ the nonlocal elasticity
theory combined with the von Kármán plate model to describe the
nonlinear vibration behavior of DLGSs. Then the element-free kp-Ritz
method is used to obtain the numerical solutions. The effects of side
length, boundary conditions, aspect ratio and nonlocal parameter on
the nonlinear vibration behavior of DLGSs are examined.

2. Theoretical formulation

2.1. vdW force between adjacent graphene sheets

The interaction between layers of DLGSs is governed by the van der
Waals force which is a non-bonded interaction and can be an attraction
or a repulsion force. Such force is often described by the Lennard-Jones
pair potential. Herein, the Lennard-Jones 6–12 model is expressed as,
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where ε denotes the bond energy at the equilibrium distance being
equal to 2.39meV σ and d are the parameter determined by the equi-
librium distance and the distance between interacting atoms, respec-
tively. According to [41], DLGSs can be divided into two categories in
term of the stacking modes of the two adjacent layers. The one in which
two graphene layers are stacked directly on top of each other is called
the AA-type DLGSs and the other is named AB-type DLGSs, in which the
carbon atoms of one layer are placed in the center of the Brillouin zone
of the other layer. The vdW force can be obtained by taking the deri-
vation of the Lennard-Jones pair potential with respect to distance d.
According to Liew et al. [42], the initial pressure between layers can be
ignored if the initial interlayer space is set to the equilibrium distance
between graphene sheets (GSs). Thus, it is of simplicity to express the
vdW force in Taylor expansion around the equilibrium position. Then
through projecting the vdW force along the z direction and integrating
it over the entire sheet, the vdW pressure between two layers of the GSs
in the z direction can be obtained. By incorporating the relation be-
tween the distance difference of two atoms and transverse displace-
ments of GSs, the interaction pressure neglecting the nonlinear terms
can be expressed as [41],

= − =q c w w i j( ), , 1,2,ij ij i j (2)

where cij is the vdW coefficients.

2.2. Governing equations incorporating nonlocal elasticity theory and
geometric nonlinearity in von Kármán sense

With the inspiration of experimental observation and the atomic
theory of lattice dynamics, Eringen [43] recognized that the stress state
in the prescribed point depends not only on the strain state of the same
point but also on that of all the other points in the body. Thus, he
proposed the nonlocal elasticity theory to reflect this relationship.
Compared with the traditional local elasticity theory, the constitutive
relation has a distinctive form. The most widely applied constitutive
relation is written in the following differential form
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