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A B S T R A C T

Reflection, propagation and energy analysis are crucially important in designing structures, especially plates. A
thick plate is considered based on first order shear deformation theory. Wave Propagation Method (WPM) is
employed to exactly derive resonant frequencies and wave power reflection from different classical boundary
conditions. Firstly, the frequency results are compared with other literature to validate the exact proposed wave
solution in the present work. Then, wave analysis and benchmark results for natural frequencies are presented
for six different combinations of boundary conditions. The results indicate that the wave power reflection of
thick rectangular plates is quite complicated and an incident wave of a specific type gives rise to other types of
waves except for simply supported boundary conditions where the reflected wave power does not depend on the
system parameters.

1. Introduction

Rectangular plates have extensive application in engineering from
Nanotechnology [1] to Aerospace [2] and Biomechanics [3] and many
others. Their responses to an external excitation and energy transmis-
sion to their neighborhoods must be studied carefully to avoid any
probable damage [4].

Many researches have contributed to study the vibration of thin
plates such as Leissa's exact solution [5]. Yet, the dynamics of thick
plates is quite complex due to the variation of shear deformation across
the thickness and effect of inertia forces [6]. Precedent studies in this
field done by Reissner [7] and Mindlin [8]. Mindline plate theory, also
known as first-order shear deformation theory (FSDT), considers the
distribution of shear deformation across the thickness as a linear
function and solves the obtained three equations of the motion. Total
deflection of the plate consists of bending deflection, shear contribution
and angles of rotation. Based on which of the mentioned parameters are
considered as fundamental variables, the strategy for deriving the
equation(s) of the motion will be determined, considering the fact that
reducing the fundamental variables, and consequently equations of the
motion will simplify the solution [9,10]. Although numerous analytical
and numerical methods have been presented, most of them have limited
applications [11,12]. Higher order shear deformation theories (HSDT)
involve higher-order expansion of the displacements. This assumption
increases the number of unknowns; Murty's theory of HSDT [13] deals

with 5, 7, 9 unknowns, Kant [14] with 6 unknowns, and Lo et al. [15]
with 11 unknowns.

Numerical and semi-analytical methods come in handy when the
complexity of a problem precludes the analytical approaches to be used.
The FEM and Rayleigh-Ritz energy methods are two major procedures
for solving the obtained equations of the motion. The proposed solu-
tions based on FEM method are able to solve the vibration of moder-
ately thick plates with any combinations of boundary conditions [16].
Yet, shear locking problem is one of their salient concerns due to cou-
pling between bending and shear modes [17]. Recently, Senjanović
et al. [18] proposed a shear-locking-free FEM method for vibration
analysis of Mindlin plates using bending deflection as a potential
function for the definition of total deflection and angles of cross-section
rotations. The Rayleigh-Ritz energy method [19–21] and boundary
characteristic orthogonal polynomials along with three-dimensional
Ritz formulation [22,23] have been used for the free vibration analysis
of thick plates with arbitrary boundary conditions. The accuracy of the
results is sensitive to the assumed natural modes presented by set of
orthogonal functions. Hashemi et al. [24] proposed an exact analytical
Levy type solution for thick plates using FSDT. They investigated the
free vibration of moderately thick rectangular plates for six combina-
tions of boundary conditions. There are also several other methods for
vibration analysis of Mindlin-Reissner plates such as cell-based
smoothed radial point interpolation method [25], discrete singular
convolution method [26].
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In addition to the methods mentioned above, there exists an exact
approach known as wave propagation method (WPM). WPM is a
simple, non-iterative, and efficient method for obtaining the natural
frequencies of a system. Instead of applying boundary conditions to
equations of the motion, reflecting, transmitting and propagating waves
will be investigated to determine the natural frequencies and mode
shapes of a system. One of the advantages of this method is the ability
to study the energy transmission to the neighbors. This is very im-
portant for designing structures, because the effect of vibration to the
neighbors and bases at frequencies near the natural frequencies will be
determined prior to the construction. Wave propagation approach has
been utilized mainly for finding the natural frequencies of beams, thin
plates, rectangular and circular shells, membranes, frames, Nano-ma-
terials, and composite structures. Study of transmission and reflection
matrices in Euler-Bernoulli [27] and Timoshenko [28] beams are two
cases of WPM method application in beam theories. Bahrami et al. [29]
used modified wave approach to find the natural frequencies of non-
uniform beams, using Euler-Bernoulli beam theory. In another work,
Bahrami et al. [30] used WPM for free vibration of non-uniform rec-
tangular membranes. Annular circular and sectorial membranes were
studied in Refs. [31,32] using two dimensional wave propagation. Also,
the nonlocal scale effect on buckling, vibration and wave reflection in
beams has been studied in Refs. [33,34]. The authors showed that, in
nanotubes, the reflected power of an incident wave, except for simply
supported boundary condition, is dependent upon the small scale
parameter and incident wave frequency. Moreover, Bahrami studied
the free vibration, wave power transmission and reflection in multi-
cracked nanobeams [35] and nanorods [36]. Furthermore, Bahrami and
Teimourian [37] presented the small scale effect on vibration and wave
power reflection in circular annular thin nanoplates. Recently, Ilkhani
et al. [38] studied energy reflection and transmission in rectangular
thin nanoplates. They showed that except for simply supported
boundary condition, in other conditions, the obtained coefficients of the
transmission matrix, and consequently the energy reflection is depen-
dent on the non-dimensional frequency parameter of the incident wave,
the non-dimensional nonlocal parameter, the thickness to length ratio
and the number of half waves in length direction.

Reviewing the above acknowledged literature provides us the clue
that there is no research conducted on wave analysis and investigation
of the effect of thickness of the plate on wave motion, conversion and
reflection in thick plates. In all previously done researches in wave
analysis of structures, there were at most two waves [27–38] while here
there are three waves, and this makes the problem more complicated to
analyze. In the present paper, a new analytical approach to analyze the
free vibration and wave reflection in thick rectangular plates is

presented using wave propagation method. In section 2, the governing
equations of the motion with free, simply supported, and clamped
boundary conditions are developed; the equations of the motion are
rewritten in a specific format compatible with Wave Propagation
Method (WPM). In this section, first, the equations of the motion are
used to derive the exact propagation matrix, then exact reflection ma-
trices are derived for mentioned boundary conditions. In addition, the
propagation and reflection matrices will be helpful for future works that
has to do with wave power transmission and reflection in waveguide
structures. In section 3, numerical results are presented and in-
vestigated. The results are compared with other literature and exact
benchmark results are presented for the natural frequency for various
aspect ratios, thickness to length ratios, and boundary conditions. As
they are considered to be exact results, other researchers can use them
to verify their approximate solutions in future works. Finally, the be-
havior of the reflection matrices is discussed for different boundary
conditions. These results are discussed thoroughly for different thick-
ness to length ratios and frequency ranges. Various boundary conditions
are also considered to analyze the wave power reflection at boundaries.
These results depict the behavior of the reflection coefficients which
shows the energy reflected and dissipated at boundaries.

2. Methodology

2.1. Governing equation of motion

The non-dimensional equations of motion based on Mindlin plate
theory for a flat, isotropic, thick rectangular plate of length a, width L
and thickness h as shown in Fig. 1 are [24]:
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where =δ h
a is the dimensionless thickness to length ratio, =η a

b is

aspect ratio, =β ωa ρh
D

2 is the non-dimensional frequency parameter,

and K 2 is the shear correction factor to acknowledge the fact that
transverse shear strains are not independent of the thickness co-
ordinate. Also, = −ν ν(1 )/21 and = +ν ν(1 )/22 where ν is Poisson's

Fig. 1. A Mindlin plate with coordinate convention and waves.

S.M. Mousavi Janbeh Sarayi et al. Composites Part B 144 (2018) 195–205

196



Download	English	Version:

https://daneshyari.com/en/article/7212069

Download	Persian	Version:

https://daneshyari.com/article/7212069

Daneshyari.com

https://daneshyari.com/en/article/7212069
https://daneshyari.com/article/7212069
https://daneshyari.com/

