Accepted Manuscript

UV-activated frontal polymerization of glass fibre reinforced epoxy composites

M. Sangermano, A. D'Anna, C. Marro, N. Klikovits, R. Liska

PII: \$1359-8368(17)34482-7

DOI: 10.1016/j.compositesb.2018.02.014

Reference: JCOMB 5539

To appear in: Composites Part B

Received Date: 28 December 2017

Revised Date: 23 January 2018

Accepted Date: 14 February 2018

Please cite this article as: Sangermano M, D'Anna A, Marro C, Klikovits N, Liska R, UV-activated frontal polymerization of glass fibre reinforced epoxy composites, *Composites Part B* (2018), doi: 10.1016/j.compositesb.2018.02.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

UV-ACTIVATED FRONTAL POLYMERIZATION OF

GLASS FIBRE REINFORCED EPOXY COMPOSITES

M. Sangermano^{1(*)}, A. D'Anna¹, C. Marro¹, N. Klikovits², R. Liska²

 ¹Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy
²Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, A-1040 Vienna, Austria

ABSTRACT:

In this paper we report, for the very first time, the possibility to UV-crosslink a glass fibre reinforced epoxy composites. We have demonstrated that the crosslinking reaction proceeds via a radical induced cationic frontal polymerization (RICFP), where the UV-surface activation of cationic ring opening polymerization is able to promote the heat front that will activate a thermal initiator in the deeper layers. Because of the very high velocity of the reaction we could obtain quickly epoxy composites maintaining the good thermo-mechanical properties.

Keywords: Photopolymerization, UV-light, epoxy, Glass Fibre Reinforced Polymers (GFRPs) composites.

(*) corresponding authors: marco.sangermano@polito.it

1. Introduction

Epoxy resins are by far the most used material in composites, applied in different field varying from sport, automotive, marine and aviation industry [1-3]. Usually epoxy-glass fibre composites are produced by thermal polymerization in the presence of amine or anhydride as a hardener.

It is very well known that photo-induced polymerization can be used to activate epoxy curing in the presence of a suitable cationic photoinitiator [4-6], as an interesting alternative to thermal curing. The UV-activation is particularly attractive since the crosslinkable formulations are solvent free, the production rates are high and the energy required is much less than thermal curing [7]. Typically onium salts, either triarylsulfonium or diaryliodonium salts, are considered as photo-acid generator

Download English Version:

https://daneshyari.com/en/article/7212105

Download Persian Version:

https://daneshyari.com/article/7212105

Daneshyari.com