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A B S T R A C T

MM3 interatomic potential is combined with Cauchy–Born rule for the first time to predict elastic properties of
the graphene sheets at infinitesimal and finite strains. Further, using plane stress condition, basal plane stiffness
and Poisson's ratio calculated using MM3 potential are found to be 310.59 nN/nm and 0.28, respectively. The
elastic properties calculated using MM3 potential are somewhat better as compared to those of predicted
through Tersoff–Brenner and second generation REBO potentials when compared with the experimental results.
Elastic properties are also obtained with MM3 potential considering alternative empirical constants for bond
stretch energy term. The present results are also compared with those obtained through modified Morse and
first/second generation REBO potentials. The present multiscale model in the framework of MM3 potential will
also facilitate the further investigations on the large atomistic structures with greater accuracy.

1. Introduction

Nanoscience and nanotechnology have emerged as new areas of
research involving various synthesized nanomaterials such as carbon
nanotubes (CNTs) discovered by Iijima [1] and graphene sheets (GSs), a
single layer of carbon atoms, first separated by Novoselov et al. [2,3]
from bulk graphite through micromechanical cleavage. Single walled
carbon nanotube (SWCNT) is considered to be the strongest material
with strength greater than diamond [4]. Due to the exceptional
thermal, mechanical and electrical properties, CNTs and GSs are found
quite suitable for engineering applications including sensing/actuation,
electronic components, nanoelectromechanical systems, load bearing
members, oscillators, manufacturing, medical science (e.g. artificial
bones and teeth), atomic force microscope cantilever tips, and mole-
cular transportation etc. For the design of devices involved with CNTs
and GSs, one of the requirement is to investigate the mechanical
characteristics (stiffness/strength properties, static and dynamic re-
sponse) of these structures. Limited experimental studies have been
carried out on the prediction of elastic properties, static and dynamic
behaviour of single/multi walled carbon nanotubes (SWCNTs/
MWCNTs) [5,6] and GSs [7–9]. These materials are widely used in
structural materials as a reinforcement to improve their elastic response
[10,11]. Due to the experimental difficulties at small scale, the math-
ematical modelling and analysis of CNTs and GSs is explored as an ef-
ficient tool to understand their structural behaviour using quantum

mechanics simulation, molecular mechanics/dynamics simulation,
continuum modelling (beam, plate and shell models), stress and strain
gradient nonlocal continuum modelling, and multiscale modelling.

The continuum elastic models (such as beam, plate and shell
models) can be employed to study the mechanical behaviour of 2D
nanostructures if their length/diameter is several times of the bond
length between the carbon atoms [12]. In continuum modelling of such
2D nanostructures, tensile/shear moduli and Poisson's ratio are esti-
mated based on the comparison of mechanical behaviour (natural fre-
quencies, mode shapes, deflection, dynamic response) predicted
through experiments/atomistic simulations and continuum models.
Treacy et al. [13] experimentally reported the Young's modulus of in-
dividual CNTs in 11 walled CNT varying from 0.4 to 4.15 TPa with an
average of 1.8 TPa. The elastic properties were estimated by comparing
the vibration amplitude of CNT measured using transmission electron
microscope to that predicted through the Euler–Bernoulli beam model.
The Young's modulus was reported to be ∼1.25 TPa by comparing the
temperature induced vibration response measured using transmission
electron microscopy to that of predicted through Euler–Bernoulli beam
model [14]. The Young's modulus was predicted as 1.28 ± 0.59 TPa
and 1.0 TPa by comparing the measured deflection of cantilever and
fixed CNTs using atomic force microscope with that predicted using
Euler–Bernoulli cantilever [15] and fixed Timoshenko beams [16], re-
spectively. However, due to the presence of van der Waals (vdW) in-
teractions, the elastic properties predicted through the single beam
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model were not accurate for the modelling of MWCNTs with smaller
length to diameter ratio and a few number of concentric tubes [17,18].
Continuum modelling is computationally efficient way to study the
mechanical characteristics of nanostructures but their inability to cap-
ture the effect of material nonlinearity due to nonlinear interatomic
interactions limits their applications and predictions may alter with the
inclusion of material nonlinearity. Further, the equivalent thickness for
continuum model is questionable which may predict inaccurate
bending modulus as compared to that predicted through atomistic si-
mulations.

The continuum models for CNTs and GSs (discrete structures)
cannot capture the small scale effects [19]. The theoretical character-
ization of CNTs using nanorod/nanobeam model and continuum plate
model for GSs was explored in the literature. To capture the small scale
effects, different nonlocal continuum stress and strain gradient theories
such as: Eringen's nonlocal stress gradient theory [20–23], strain gra-
dient theory [24], modified couple stress theory [25] were employed
for analyzing the nanostructures. However, the determination of non-
local scale parameter is somewhat arbitrary without any theoretical
framework. From the different stress and strain gradient elasticity
theories, Eringen's nonlocal stress gradient theory is widely employed
to characterise the mechanical response of single/multi layered gra-
phene sheet (SLGS/MLGS) [26–28].

In order to capture the mechanical response more accurately in-
cluding material nonlinearity, atomistic simulation is a powerful tool to
characterise materials at atomic scale for predicting the benchmark
solutions. These are broadly classified into two categories (i) Quantum
mechanics approaches: ab initio and tight binding simulation (ii)
Molecular mechanics/dynamics (MM/MD) simulations. The ab initio
and tight binding methods under quantum mechanics simulation pro-
duce more accurate results as compared to MM/MD simulations. MM/
MD simulation is a powerful and computationally efficient tool for
atomistic system with relatively large number of atoms as compared to
ab initio and tight binding methods. In MD/MM simulation, atoms are
considered as point masses and the equations of motion are derived on
the basis of the Newtonian mechanics. In MD simulation, effect of
temperature is taken into account and equations of motion are solved
using time integration techniques. In MM simulation, equilibrium
equations derived through the minimization of the potential energy
functional are solved. In MM/MD, interactions between the atoms are
modelled by interatomic potentials like Lennard–Jones potential [29],
first and second generation reactive empirical bond order potentials
[30–32], Morse [33] and modified Morse potential [34], molecular
mechanics force fields: MM2 [35], MM3 [36], MM4 [37], universal
force field (UFF) [38] etc. In the space frame modelling of nanos-
tructures, bonds between the atoms are modelled as beam/truss ele-
ments. The cross sectional properties of these beams are obtained by
equating the interatomic potential energy with the strain energy of
continuum beams/truss. As the number of nodes in computational
model based on space frame approach are equal to the number of
atoms, it is computationally prohibitive as compared to continuum and
multiscale modelling.

To achieve the accuracy of MM simulation and computational effi-
ciency of continuum modelling, the multiscale modelling approach is
employed for the atomistic system with large number of atoms. In the
multiscale modelling, the constitutive matrix calculated directly from
molecular potential functions at atomic scale is used at the continuum
scale. The molecular model accounting for the bond interactions is
coupled to continuum model through Cauchy–Born rule. The elastic
properties of SWCNTs and GSs using multiscale modelling were esti-
mated using the interatomic potentials in conjunction with
Cauchy–Born rule [39,40], higher order Cauchy–Born rule [41–43] and
exponential Cauchy–Born rule [44]. The variation of extensional and
bending tangent stiffness coefficients of GS with strain and curvature
was reported using multiscale approach based on first and second
generation REBO potentials [45–47]. From the reported studies, it may

be noted that the most of the studies in the multiscale framework to
model the effect of material nonlinearity are based on Tersoff–Brenner
interatomic potential. However, the elastic properties obtained with
Tersoff–Brenner potential differ significantly from those of reported in
experimental studies [9]. Berinskii and Borodich [48] noted the similar
behaviour of REBO potentials and calculated elastic properties with
harmonic type improved potentials. However, the quadratic type har-
monic interatomic potential considered in Ref. [48] is incapable to
model the material nonlinearity due to nonlinear atomic interactions
and lack of proper nonlinear models for accurate description of gra-
phene mechanical properties was brought into the conclusion. To the
best of the authors' knowledge, nonlinear constitutive model for GSs in
the framework of multiscale modelling using more accurate interatomic
potential such as MM3 interatomic potential, has not be addressed in
the literature. In the present work, nonlinear constitutive behaviour of
GSs under finite strains using Cauchy–Born rule in conjunction with the
MM3 interatomic potential, along with the modified Morse potential for
the purpose of comparison, is reported. The present results are also
compared with those of obtained through first and second generation
reactive empirical bond order (REBO–I and REBO–II) potentials [47].

2. MM3 and modified Morse potential for carbon

The MM3 interatomic potential contains energy terms with higher
order than quadratic in nature and is found to be suitable to study the
elastic properties of GSs and CNTs. In MM3 interatomic potential, the
total energy of the atomistic system is expressed as:

∑ ∑ ∑ ∑ ∑ ∑ ∑= + + + + + +V U U U U U U UT s θ φ sθ sφ θθ vdW

(1)

where VT is total potential energy of the atomistic system in kcal/mole,
Us, Uθand Uφare the energies due to bond stretch, bond angle and di-
hedral angle, respectively, Usθ, Usφ and Uθθ are the cross interaction
energies due to stretch–bend, stretch–torsion and bend–bend interac-
tions,UvdW is energy due to non–bonded van der Waals interactions. The
mathematical form of these energies as a function bond lengths and
angles is expressed as [36]:
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In–plane bending energy:
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Torsional energy:
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Stretch–bend interaction energy:
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Torsion–stretch interaction energy:
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Bend–bend interaction energy:
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van der Waals interaction energy:
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The values of constant parameters in the energy terms in Eq. (2) are
extracted from mm3.prm file of the open source MM simulation
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