Accepted Manuscript

An interface approach based on moving mesh and cohesive modeling in Z-pinned composite laminates

Marco Francesco Funari, Fabrizio Greco, Paolo Lonetti, Raimondo Luciano, Rosa Penna

DOI: 10.1016/j.compositesb.2017.10.018

Reference: JCOMB 5338

To appear in: Composites Part B

Received Date: 25 July 2017

Revised Date: 18 September 2017 Accepted Date: 10 October 2017

Please cite this article as: Funari MF, Greco F, Lonetti P, Luciano R, Penna R, An interface approach based on moving mesh and cohesive modeling in Z-pinned composite laminates, *Composites Part B* (2017), doi: 10.1016/j.compositesb.2017.10.018.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

An interface approach based on moving mesh and cohesive modeling in Z-pinned composite laminates

Marco Francesco FUNARI^a, Fabrizio GRECO^a, Paolo LONETTI^a, Raimondo LUCIANO^b, Rosa PENNA^c

Department of Civil Engineering, University of Calabria, Via P. Bucci, Cubo39B, 87030, Rende, Cosenza, Italy.

Department of Mechanics, Structures and Environment, University of Cassino, via G. Di Biasio 43, 03043 Cassino, Italy

Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy

ABSTRACT: An FE approach based Arbitrary Lagrangian-Eulerian (ALE) and cohesive fracture mechanics is implemented to investigate the effects of debonding mechanisms on the behavior of z-pinned composite laminates. The model is based on the combination of moving and discrete cohesive interface elements, which allow the simulation of interfacial damage or strengthening mechanisms produced by debonding phenomena or z-pinned techniques, respectively. Moreover, complex phenomena such as crack initiation, coalescence mechanisms are easily implemented in both static and dynamic frameworks. Despite existing approaches, available from the literature, the computational procedure is able to overcome difficulties concerning mesh dependence of the solution, numerical complexities and costs involved in the solving procedure. The numerical implementation of the model and its capability to predict debonding mechanisms are discussed with respect different laminate configurations and onset conditions. Moreover, comparisons with existing experimental results available from the literature are developed to investigate the relationship between strengthened and unstrengthened composite laminates.

Keywords: crack initiation, dynamic debonding, ALE, Z-pins.

Nomenclature

N^Z P_{np}^c	number of z-pin elements z-pin critical cohesive stress (opening)
N^{D} N^{Z}	number of internal discontinuities number of z-pin elements
N^{L}	number of the layers
g_f	crack growth function for interlaminar damage
${\cal g}_f^{\it pin}$	fracture function of z-pins
$G_{ extit{ iny IIC}}^{ extit{ iny pin}}$	single pin critical strain energy release rate (mode II)
$G_{IC}^{ pin}$	single pin critical energy release rate (mode I)
$G_{II}^{\ pin}$	mode II energy release rate for the z-pin
G_{I}^{pin}	mode I energy release rate for the z-pin

Download English Version:

https://daneshyari.com/en/article/7212374

Download Persian Version:

https://daneshyari.com/article/7212374

<u>Daneshyari.com</u>