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a b s t r a c t

The state-space approach in conjunction with the Levy's method is used to solve exactly the free vi-
bration problem of specially orthotropic multilayered cylindrical and spherical panels. A hierarchical
formulation is presented to build the matrices of the method from small elementary blocks which are
invariant with respect to the order and typology of the kinematic shell theory. As a result, the analytical
effort to derive the governing equations is minimized and a large number of Levy-type solution based on
low to high order, equivalent single-layer or layerwise theories, can be generated within the same
mathematical framework. Thereby, the refinement of the two-dimensional shell model can be tailored
according to the thickness ratio and the degree of anisotropy of the problem under study and the desired
accuracy. Some illustrative results on both thin and thick, laminated and sandwich panels with various
boundary conditions are presented and discussed to show the potential of the formulation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The so-called Levy's method is a well established technique
aimed at obtaining exact bending, buckling and vibration solutions
of particular plate and shell problems. The origin and name of the
method are commonly ascribed to the seminal work of Maurice
Levy, who successfully solved in 1899 the bending problem of thin
isotropic rectangular plates with simply supported two opposite
edges and arbitrary conditions of supports on the two remaining
opposite edges using single Fourier series [1]. As observed by Leissa
[2], the same type of solution was actually first used by Voigt in
1893 to determine the transverse vibrations of rectangular plates
[3]. In spite of this, the single trigonometric series expansion is now
conventionally referred to as Levy's solution for both static and
dynamic problems [4].

The availability of exact solutions for some plate and shell
problems is valuable as they serve as important references for
checking the convergence and accuracy of approximate and nu-
merical methods. To this aim, the Levy's method, even if at the cost
of greater complexity, is more general and of practical interest than
the Navier's method, which is restricted to exact analysis of plates
and shells with all edges simply supported. However, it does not

have an entirely general character and shares some limitations with
the Navier's method, since both can be applied only to particular
geometries (i.e., rectangular plates, cylindrical and spherical shells)
and material symmetries (i.e., specially orthotropic structures), for
which an exact solution of the corresponding boundary-value
problem is viable.

This paper is focused on the application of the Levy's method to
vibration problems, which has a long and successful history,
especially for plates [2,5e24]. In particular, the present work is
aimed at presenting an advanced state-space formulation of the
method for two-dimensional (2-D) exact vibration analysis of cy-
lindrical and spherical single- and multi-layered specially ortho-
tropic panels having both small and large thickness and
shallowness ratios. It is worth noting that, contrary to the fairly
large number of papers on plates, very few works are available in
the open literature on Levy-type vibration solutions of shells
[25e29]. The main novelty of the present contribution relies on a
versatile hierarchical technique to build the final matrices of the
state-space Levy's method from elementary blocks, called funda-
mental nuclei, which are invariant with respect to the 2-D kine-
matic shell theories. In so doing, the tedious and cumbersome
analytical effort required for deriving the governing equations
related to each specific theory is avoided and a large family of Levy-
type vibration solutions of curved panels based on kinematic the-
ories of different order and typology can be automatically
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generated within the same mathematical framework. The meth-
odology stems from the powerful technique developed by Carrera
[30] andmakes extensive use of indicial notation. The application of
the Carrera's formulation to the Levy's method was originally
proposed by the present author for laminated and FGM plates
[31,32] and recently applied by Rezaei and Saidi for vibration
analysis of thick porous-cellular plates [33]. In this work, the
method is generalized and extended to curved panels.

As shown later, the hierarchical nature of the present formula-
tion allows the accurate exact vibration analysis of both thin and
thick, deep and shallow multilayered shell structures. Indeed, an
exact 2-D analysis of a multilayered shell does not imply that the
corresponding results are also accurate compared to a truly three-
dimensional (3-D) analysis. It is known that the thickness ratio
(defined as the ratio between the thickness of the panel to the
shortest of the span lengths or radii of curvature) and the shal-
lowness ratio (defined as the ratio of the shortest span length to
one of the radii of curvature) are two important parameters gov-
erning the choice of an appropriate 2-D kinematic model of the
curved panel having a desired accuracy [34]. Classical low-order
theories are typically employed when the panel is thin and
shallow, whereas refined higher-order 2-D shell theories are
required to achieve a satisfactory accuracy for thick and deep shells.
The accuracy is also largely affected by the frequency range of in-
terest and the degree of anisotropy in the thickness direction [35].
Broadly speaking, for a fixed kinematic theory it usually degrades as
the wavelength of the vibration mode is of the order of magnitude
of the panel thickness and as the variation of mechanical properties
through the thickness direction increases like the case of sandwich
panels. By means of the present formulation, the refinement of the
shell model can be tailored on the specific case under investigation
and the accuracy of the refined model can benefit from the exact-
ness of the Levy-type solution, without being adversely influenced
by the convergence and stability properties of an approximate
method.

The paper is organized as follows. After some preliminary def-
initions in Section 2 and a concise presentation in Section 3 of the
family of 2-D shell theories employed in this work, the equations of
motion and related boundary conditions of cylindrical and spher-
ical panels are presented in Section 4 according to the compact
indicial form introduced by Carrera [30]. The hierarchical con-
struction of the matrices involved in the Levy-type solutions from
small invariant elementary blocks is detailed in Section 5. Some
illustrative vibration results based on shell theories of different
order and typology are shown in Section 6 along with comparison
with exact 3-D analysis and other 2-D approaches. Finally, Section 7
contains some concluding remarks.

2. Preliminaries

Let's consider the cylindrical and spherical multilayered panels
in Fig. 1, which are composed of N[ layers of homogeneous ortho-
tropic material. Each layer k has thickness hk and is numbered
sequentially from bottom (k ¼ 1) to top (k ¼ N[) of the panel. The

total thickness of the panel is h ¼PN[

k¼1hk. The undeformed middle
surface Uk of each layer is described by the two orthogonal curvi-
linear coordinates a and b. Let zk denote the rectilinear local
thickness coordinate in the normal directionwith respect toUk. The
components of the displacement field uk of the k-th layer are
indicated as uka, u

k
b and ukz in the a, b and z directions, respectively.

According to 3-D elasticity and considering curved panels with

constant curvature, the in-plane strains ε
k
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Rka and Rk
b
are the curvature radii of the a and b coordinate

curves, respectively, at the generic point of the middle surface Uk of
the layer, and

Hk
a ¼ 1þ zk

Rka
Hk
b ¼ 1þ zk

Rk
b

(3)

It is noted that Hk
a ¼ 1 for cylindrical panels since Rka ¼ ∞ and

Hk
a ¼ Hk

b for spherical panels since Rka ¼ Rkb. Note also that when

1=Rka ¼ 1=Rkb ¼ 0, the above relations degenerate to those for plates.

Similarly, the normal strain components εkn ¼
n
gk
az gkbz ε

k
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oT
can be expressed as follows
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and Dk
z ¼ v

vzI3.
Assuming a linearly elastic orthotropic material, the constitutive

equations of the k-th layer in the laminate reference coordinate
system are written as
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where sk
p ¼

n
skaa sk
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tk
ab

oT
is the vector of in-plane stresses,

sk
n ¼

n
tkaz tkbz skzz

oT
is the vector of normal stresses, and the

matrices of stiffness coefficients given by
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are derived from those expressed in the layer reference system
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