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This paper presents the wave propagation approach for analyzing the free vibration and wave reflection
in carbon nanotubes. The propagation and reflection matrices obtained by the wave propagation method
are useful for the analysis of mechanical energy transmission and reflection in micro/nano devices. These
matrices can also be used for obtaining the natural frequencies of carbon nanotubes. Firstly, the obtained
natural frequencies by this method are compared with the results in the literature. Then, the effect of

small scale on the reflected power of an incident wave upon different boundary conditions is studied in

Keywords:

A. Nano-structures

B. Vibration

C. Analytical modelling
Wave reflection

details. It was found that the reflected power of an incident wave upon a simply supported boundary is
independent of the small scale, incident wave frequency, material and geometrical parameters of the
carbon nanotubes while the reflected power of a wave upon clamped and free boundary conditions
depends on the small scale, incident wave frequency, material and geometrical parameters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nanotechnology is one of the new fields of scientific researches
which has drawn attention of so many researchers owing to su-
periority of nanoscale materials as mechanical, thermal, electrical
and optical properties. Two allotropes of carbon, carbon nanotubes
(CNTs) and graphene sheets (GSs), are the main nanoscale geom-
etries which engineers attempt to extol their products by using
such nanoscale materials. Of course, they should analyze the
behavior of such materials using reliable mathematical methods. In
general, computational tools in nanoscale can be categorized in
three groups: atomistic simulations, continuum mechanics and
hybrid atomistic-continuum. Atomistic and semi-atomistic
methods model intra-molecular forces using some potential func-
tions which are applicable for analysis with few numbers of atoms
in short interval time. In fact, for large atomic structures they are so
time consuming. Among these groups, the continuum mechanics is
a reliable, simple and computationally non-expensive method
compared to the other two. The main assumption in the classical
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continuum mechanics is that the stress at a point is a function of
strain at that point. But, in the nanoscale, the spaces in the mo-
lecular lattices are comparable with the dimensions of such struc-
tures. So, the continuum theories need some appropriate changes
to consider the size effects. In the 90's, some models were intro-
duced by Mindlin and Eshel [1], Green and Rivlin [2] and Mindlin
[3,4] to consider this effect on continuum model, but they are so
complex due to their multiplicity of unknowns. Among them, the
nonlocal elasticity theory which was introduced by Eringen [5] is
the simplest one and it is being used for analyzing the mechanical
behavior of nanostructures, especially the carbon nanotubes
(CNTs). Many researchers have modeled the carbon nanotubes as
elastic beams such as Timoshenko, Euler-Bernoulli, shells and
elastic rod [6—10]. Reddy [11] presented analytical and numerical
solutions on static deflections, buckling loads, and natural fre-
quencies of three kinds of nonlocal beam theories known as
Euler—Bernoulli, Timoshenko, Reddy and Levinson. Moreover, a
nonlocal nonlinear formulation was derived by Reddy [12] for
bending of classical and shear deformation theories of beams and
plates. Thai [13] proposed a nonlocal shear deformation theory for
bending, buckling, and vibration of nanobeams. Based on nonlocal
continuum mechanics, Wang et al. [ 14] analyzed the free vibration
of Euler—Bernoulli and Timoshenko nanobeams. Loya et al. [15]
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investigated the free transverse vibration of cracked
Euler—Bernoulli nanobeams using nonlocal elasticity model. The
vibration of double and multi-walled carbon nanotubes has also
been investigated by Zhang et al. [16] and Chowdhury et al. [17],
respectively. Based on nonlocal Timoshenko beam theory, Ansari
and Ramezannezhad [18] analyzed the large amplitude vibrations
of embedded multi-walled carbon nanotubes including thermal
effects. In similar works, the nonlocal Timoshenko beam theory
was used by Yang et al. [19] and Ke et al. [20] for nonlinear free
vibration analysis of single- and embedded double-walled carbon
nanotubes, respectively. Murmu and Adhikari [21] presented an
analytical method for analyzing transverse vibration of double-
nanobeam systems using nonlocal elasticity theory.

Various methods have been integrated with nonlocal elasticity
theory to analyze nanostructures. Finite element method was used
by Eltaher et al. [22,23] to study the free vibration and buckling
analyses of functionally graded Euler—Bernoulli nanobeams. More-
over, Phadikar and Pradhan [24] studied nanobeams and nanoplates
with a linear nonlocal formulation using finite element method.
Zhang et al. [25] analyzed the bending, buckling, and vibration of
micro/nanobeams using a hybrid nonlocal Euler—Bernoulli beam
model. Furthermore, based on Euler—Bernoulli beam theory, Civalek
and Akgoz [26] studied free vibration of microtubules via Differential
Quadrature (DQ) method.

In classical method, the natural frequencies can be obtained by
applying the boundary conditions to the general solution of dif-
ferential equation of motion. There is an alternative method
known as wave propagation method in which the vibrations are
described as propagating waves traveling in the structure. This
method is a simple, non-iterative and efficient method for calcu-
lation of the natural frequencies of the structures. This method
was mainly used in macrostructures to study the free vibrations of
Euler Bernoulli beams [27], and Timoshenko beams [28]. Argento
and Scott [29] used the wave propagation method to analyze the
vibration of a rotating Timoshenko shaft. In another work, Tan and
Kang [30] investigated the wave motions in an axially strained,
rotating Timoshenko shaft. The wave propagation in non-uniform
waveguides such as non-uniform bars and non-uniform Euler
Bernoulli beams was considered by Lee et al. [31]. Also, the wave
method was used for free and forced vibrations of axially loaded
cracked Timoshenko beams [32] and curved beams [33]. Mei [34]
presented an exact wave-based analytical solution for obtaining
the natural frequencies of classical planar frame structures, in
which the coupling effect between bending and longitudinal vi-
brations was taken into account. Moreover, Mei [35] studied the
effect of lumped end mass on bending vibrations of a Timoshenko
beam using the wave approach. Furthermore, Mei [36] used the
wave method for calculating the natural frequencies and mode
shapes of single-story multi-bay planar frame structures.
Recently, Mei [37] studied the vibration of single-story multi-bay
planar frame structures via the wave approach, in which the ro-
tary inertia, and shear deformation effects were taken into ac-
count. A modified wave approach was presented by Bahrami et al.
[38] to analysis a non-uniform Euler beam. Also, the wave prop-
agation technique was used for natural frequency calculation of
thin cylindrical shells [39]. This method was also applied for
coupled vibration of fluid-filled shells [40], submerged shells [41]
and cross-ply laminated composite shells [42]. Xuebin [43]
analyzed the free vibration of a circular cylindrical shell via the
wave propagation method based on Flugge theory. Recently,
Bahrami et al. [44] used the wave method for free vibration of
circular and annular membranes to obtain the natural frequencies
of these structures. In another work, Bahrami and Teimourian [45]
showed that the wave method can be extended to non-uniform
circular and annular membranes.

It is noticeable to mention that the wave propagation phe-
nomenon which is applied by so many researchers in the litera-
ture for CNTs [46—53], is very different from the wave propagation
method. The wave propagation method uses propagation and
reflection matrices to analyze the behavior of the bodies while the
wave propagation analysis is based on the investigation of wave
behavior in the structures by investigating the dispersion
equation.

According to present literature reviews and to the best of the
authors' knowledge, there are only two papers based on wave
propagation method for vibration and wave reflection analysis of
nanostructures. Recently, Ilkhani et al. [54] studied the effect of
small scale on the vibration and wave reflection in thin rectangular
nanoplate. Also, Bahrami and Teimourian [55] investigated the
nonlocal scale effect on buckling, vibration and wave reflection in
Euler—Bernoulli nanobeams. In reality, most of the carbon nano-
tubes have thick thickness and Euler—Bernoulli beam theory
cannot predict the actual behavior of such nanostructures. As a
result, the power reflection results of these two papers [54,55]
cannot be applied to a thick nanostructure and there is still no
literature about energy transmission and reflection in thick nano-
structures. In this paper, the wave propagation technique is applied
to a thick nanoscale structure in order to obtain the propagation
and reflection matrices. The obtained propagation and reflection
matrices will be helpful for future work correlated with wave po-
wer transmissions and reflections in nanoscale structure. Moreover,
the natural frequencies obtained by this method are compared with
the results in the literature. Finally, the small scale effect on the
reflected power of an incident wave upon different boundary
conditions is studied in details.

2. Mathematical formulations
2.1. Equation of motion

According to the nonlocal theory proposed by Eringen [5], the
stress at a reference point X in an elastic medium depends on the
strain at every point of the body. Based on this theory, the stress at a
point is defined as:

aij = /M\X = X'|, ) Cyjgerg (X)dV (X') (1)

where ¢jj and ey are stress and strain tensors, Gy is fourth order
elastic modulus tensor, A(|x —X'|,a) is nonlocal kernel which
weights the classical strains with x around the volume V and a is the
material constant. The material constant is defined as egpa/l where a
is internal characteristic length which depends on lattice param-
eter, granular size and C—C bonds, [ is external characteristic length
and ey is a constant correlated by material type. The parameter epa
is known as small scale. A certain value for small scale is not
available and for any type of analysis this will be found by
comparing the results of continuum modeling with atomistic ones.
The nonlocal kernel function was defined by Eringen [5]:

A @) = (2n2a?) 'K (@) )
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where Ko is modified Bessel function. By integrating Eq. (1) using
Eq. (2), the constitutive equation can be obtained as:

(1 - (eoa)2V2>o- —C:e (3)

where V2 is Laplacian operator. The displacement fields of the
elementary Timoshenko beams can be considered as:
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