Accepted Manuscript

Enhanced mechanical and tribological properties in polyphenylene sulfide/polytetrafluoroethylene composites reinforced by short carbon fiber

Wei Luo, Qi Liu, Yi Li, Shengtai Zhou, Huawei Zou, Mei Liang

PII: \$1359-8368(16)00076-7

DOI: 10.1016/j.compositesb.2016.01.036

Reference: JCOMB 4014

To appear in: Composites Part B

Received Date: 4 September 2015
Revised Date: 11 January 2016
Accepted Date: 17 January 2016

Please cite this article as: Luo W, Liu Q, Li Y, Zhou S, Zou H, Liang M, Enhanced mechanical and tribological properties in polyphenylene sulfide/polytetrafluoroethylene composites reinforced by short carbon fiber, *Composites Part B* (2016), doi: 10.1016/j.compositesb.2016.01.036.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Enhanced mechanical and tribological properties in polyphenylene sulfide/polytetrafluoroethylene composites reinforced by short carbon fiber

Wei Luo¹, Qi Liu¹, Yi Li², Shengtai Zhou³, Huawei Zou^{*1}, Mei Liang^{*1},

- State Key Laboratory of Polymer Materials Engineering, Polymer Research
 Institute of Sichuan University, Chengdu 610065, China
- 2. System Engineering Institute of Sichuan Aerospace, Chengdu 610100, China
- Department of Chemical and Biochemical Engineering, Faculty of Engineering,
 University of Western Ontario, London, Ontario N6A 5B9, Canada

Abstract

Self-lubricating composites based on Polyphenylene sulfide/Polytetrafluoroethylene (PPS/PTFE) reinforced with short carbon fibers (CF) were prepared by melt-blending. The effect of CF loadings on morphology, mechanical and dry-sliding behavior of the composite were carefully investigated in expectation of providing valuable information for the application of polymer-based composites. Results indicated that the incorporation of CF apparently improved the tensile strength, flexural modulus and hardness of PPS/PTFE blends. Meanwhile, the specific wear rate and average friction coefficient of PPS/PTFE reinforced by 15vol% CF reached to 5.2

E-mail address: hwzou@163.com (Huawei Zou); liangmeiww@163.com (Mei Liang)

^{*}Corresponding author. Tel: +86-28-85408288; Fax: +86-28-85402465.

Download English Version:

https://daneshyari.com/en/article/7212831

Download Persian Version:

https://daneshyari.com/article/7212831

Daneshyari.com