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a b s t r a c t

For a large class of composites, the adhesion at the fiberematrix interface is imperfect i.e. the continuity
conditions for displacements and often for stresses is not satisfied. In the present contribution, effective
elastic moduli for this kind of composites are obtained by means of the Asymptotic Homogenization
Method (AHM). Interaction between fiber and matrix is considered for linear elastic fibrous composites
with parallelogram periodic cell. In this case, the contrast or jump in the displacements on the boundary
of each phase is proportional to the corresponding component of the tension on the interface. A general
anisotropic behavior of the interphase is assumed and the interface stiffnesses are explicitly given in
terms of the elastic constants of the interphase. The constituents of the composites exhibit transversely
isotropic properties. A doubly periodic parallelogram array of cylindrical inclusions is considered.
Comparisons with theoretical and experimental results verified that the present model is efficient for the
analysis of composites with presence of imperfect interface and parallelogram cell. The present method
can provide benchmark results for other numerical and approximate methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, micromechanical analysis method is applied to a
periodic composite with unidirectional fibers and parallelogram
cells. The analytical expressions of the homogenized elastic prop-
erties are calculated for two phase composite with hard and soft
interfaces. The Asymptotic Homogenization Method (AHM), for
two-phase fibrous periodic composites with imperfect adhesion
and oblique cell is used for the calculation of the plane elastic
effective coefficients. This contribution is an extension of previous
works by the authors (Rodriguez-Ramos et al., 2011 [1], Guinovart-
Diaz et al., 2011 [2]), where only the perfect contact was considered

for the antiplane problem. Besides, the present investigation is
different of those of Lopez-Realpozo et al., 2011 [3] and Rodriguez-
Ramos et al., 2013 [4] since the plane problem is solved for the
calculation of the effective coefficients for composites with paral-
lelogram cell. The novelty of the present work is that the imper-
fection of the interface in the composite with parallelogram cell is
taken into account introducing two spring-type stiffnesses (Kn,Kt)
for plane problems.

Using a classical approach [5], the spring parameters can be
identified from a three phase problem where the interphase
coating the fiber is very thin. The paper is organized as follows. In
the first part of the paper the derivation of the contact law me-
chanically equivalent to the interphase coating the fiber is reviewed
on the basis of an energy method [6]. The method allows obtaining
the spring-type interface law for a general anisotropic behavior of
the interphase and the interface parameters (Kn,Kt) are explicitly
given in terms of the elastic constants of the interphase.

The results of the micromechanical analysis presented in the
second part of this paper are mainly focused on the impact of the
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arrangement of the fibers and the mechanic imperfection at the
interface on the plane properties in the composites. Moreover, the
theoretical approach is validated with some theoretical models.

2. Modeling of imperfect contact

The interphase coating the fiber is represented as a thin layer Bε

with uniform small thickness ε≪1 and cross-section A. The inter-
phase joins the fiber and the matrix, assumed to occupy the
reference configurations Sε1 and Sε2, respectively.

Let Gε

1, G
ε

2 be the interfaces between the adhesive and the ad-
herents and let Sε ¼ Sε1∪S

ε

2∪B
ε∪Gε

1∪G
ε

2 denote the composite made
of the adhesive and the two adherents.

Adhesive and adherents are assumed to be perfectly bonded in
order to ensure the continuity of the displacement and stress vector
fields across Gε

1, G
ε

2.
Let (O,i1,i2,i3) be an orthonormal Cartesian basis and let

(O,x1,x2,x3) be the coordinates a particle. The origin is taken at the
center of the interphasemidplane and the x3� axis is perpendicular
to the interphase midplane.

The materials are homogeneous and linear elastic with C1
ijkl, C

2
ijkl

and Cε

ijkl the elasticity tensors of the adherents and of the inter-
phase, respectively. The elasticity tensors are assumed to be sym-
metric, with the minor and major symmetries, and positive
definite.

The adhesive is assumed to be soft, i.e. Cεijkl¼ εCijkl with Cijkl in-
dependent of ε.

The adherents are subjected to a body force density
f : Sε1∪S

ε

2/ℝ3 and to a surface force density g : Gε/ℝ3

on Gε

g3ðvSε1Gε

1Þ∪ðvSε2Gε

2Þ. Body forces are negligible in the adhesive.
On the complementary part Gε

u3ðvSε1Gε

1Þ∪ðvSε2Gε

2ÞGg homoge-
neous boundary conditions are assigned: uε¼0 on Gε

u, where
uε: Sε/ℝ3 is the displacement field defined from Sε. The sets Gε

g ,
Gε

u are assumed to be located far from the interphase and the fields
of the external forces are sufficient regularity to ensure the exis-
tence of equilibrium configuration.

The approach used in Ref. [6] to obtain the contact law is based
on the fact that stable equilibrium configurations of the composite
assemblage minimize the total energy:

EεðuÞ ¼
Z
Sε1

�
1 =2C1ijklui;juk;l � f iui

�
dVx þ

Z
Sε2

�
1 =2C2ijklui;juk;l

� f iui

�
dVx �

Z
Gε

g

giuidAx

þ
Z
Bε

�
1 =2 εCijklui;juk;l

�
dVx;

in the space of kinematically admissible displacements:

Vε ¼
n
u2H

�
Sε;ℝ3

�
: u ¼ 0 on Gε

u

o
;

where H(Sε;ℝ3) is the space of the vector-valued functions on the
set Sε which are continuous and differentiable as many times as
necessary. Under suitable regularity assumptions, the existence of a
unique minimizer u2Vε is ensured [7].

For the asymptotic analysis, it is convenient to introduce the
following change of variables bp: ðx1; x2; x3Þ/ðz1; z2; z3Þ in the
adhesive:

z1¼ x1; z2¼ x2; z3 ¼ x3=ε;

which gives

v

vz1
¼ v

vx1
;

v

vz2
¼ v

vx2
;

v

vz3
¼ ε

v

vx3
:

A change of variable p: ðx1; x2; x3Þ/ðz1; z2; z3Þ is also intro-
duced in the adherents:

z1¼ x1; z2¼ x2; z3¼ x3±1=2ð1� εÞ;

where the plus (minus) sign applies whenever x2Sε1ðx2Sε2Þ and
one has

v

vz1
¼ v

vx1
;

v

vz2
¼ v

vx2
;

v

vz3
¼ v

vx3
:

After the change of variables bp, the interphase occupies the
domain

B ¼
n
ðz1; z2; z3Þ2ℝ3: ðz1; z2Þ2A; jzj<1=2

o
;

and the adherents occupy the domains S1,2 ¼ S1,2
ε ± 1/2(1�ε)i3. The

sets G1,2 ¼ {(z1,z2,z3)2ℝ3:(z1,z2)2A,z3 ¼ ±1/2} are taken to denote
the interfaces between B, and S_{1,2}, and S ¼ S1∪S2∪B∪G1∪G2 is
called the rescaled configuration of the composite body. Lastly, Gu

and G
ε
indicate the images of Gε

u and Gε

g under the change
of variables, f :¼ f+p�1 and g ¼ g+p�1 the rescaled external forces.

Using the changes of variables given by p, bp and denoting
u ¼ uε+p�1 and bu ¼ uε+bp�1 the displacement fields from the
rescaled adhesive and adherents, respectively, the total energy
takes the rescaled form:

Eεðbuε

;uεÞ ¼
Z
S1

�
1 =2C1ijklu

ε

i;ju
ε

k;j;l � f iu
ε

i;j

�
dVz þ

Z
S2

�
1 =2C2ijklu

ε

i;ju
ε

k;j;l � f iu
ε

i;j

�
dVz �

Z
Gε

giu
ε

i dAz

þ
Z
Bε

1 =2
�
ε
�1K33

ki buε

k;3buε

i;3þ2Ka3
ki buε

i;3buε

k;aþεKab3
ki
buε

i;abuε

k;b

�
dVz;
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