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a b s t r a c t

A constitutive model for carbon nanotube (CNT) reinforced rubbers is proposed on the basis of the
polymer chain length statistics. Rubbers both with conventional fillers like silica or carbon black (hybrid
system) and without them are considered. The reinforcement by CNTs is explained by additional cross-
linking which influences the probability density function of polymer chain lengths. The change in the
probability density function is statistically reasoned and incorporated into a full network model based on
the numerical integration over the unit sphere. This full network model is able to describe typical in-
elastic effects of filled rubbers as for example the Mullins effect, strain induced anisotropy and perma-
nent set. The so obtained model demonstrates good agreement with experimental data on CNT blended
rubbers available in literature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since their discovery in 1991 [17] carbon nanotubes (CNT) have
appeared to be a very effective mean of reinforcement for elasto-
meric materials as for example rubbers. Both single- andmulti-wall
CNTs can effectively be applied with or without conventional fillers
(see, e.g., [27,7,15,30,32]). By using along with the conventional
fillers like carbon black or silica within a hybrid system even a
relatively small volume fraction of CNTs suffices in order to reach a
significant improvement of mechanical characteristics. For
example, Lorenz et al. [24] reported that with the increasing con-
centration of CNTs the stress-strain response of the composite be-
comes stiffer while the strain at break slightly decreases (see also
[13,10]).

The mechanism of this reinforcement is still not thoroughly
studied. However, there is a consensus that CNTs introduce addi-
tional cross-links and influence thus the entropy of the filler-
polymer system [21,29]. Thus, the cross-link density increases
with the CNT concentration up to some critical value [35,31]. Lit-
vinov et al. [23] found out that the mobility of the rubber matrix is
restricted by the adsorbed polymer chain fragments which form
physical junctions with the filler. Bokobza [4] also reported that the

interaction between the filler and the matrix could increase the
effective degree of cross-linking. This is especially the case for fillers
with reactive surface groups as for example CNTs.

There are relatively many works focusing on small strain
behavior of CNT polymer composites (see, e.g., [28,1,2]). Odegard
et al. [28] proposed an equivalent-continuum modeling method
for polymers reinforced by nanotubes with different lengths,
concentrations and orientation. Ashrafi & Hubert [2] utilized the
Mori-Tanaka method in addition to the finite element analysis to
determine elastic properties of random and oriented twisted CNT
array/polymer composites. Anumandla & Gibson [1] also consid-
ered the waviness of nanotubes for estimating the effective elastic
modulus of CNT reinforced composites.

However, there are very few studies dealingwith the large strain
response of CNT reinforced elastomers. A phenomenological model
for multi-wall CNT rubber composites was proposed by Cantournet
et al. [5]. The model is based on the rule of mixtures. The rubber
phase is simulated by a compressible version of the eight chain
model [3] while the CNT-phase is described by a polynomial
expression in terms of the CNT stretch. The model shows good
agreement with own experimental data of the authors. C�ordova
et al. [6] further extended this model to inelastic behavior of the
rubber phase in order to take softening and residual strains into
account. Georgantzinos et al. [14] presented a finite element model
of single-wall CNTs blended rubbers. The representative volume
element of the model includes a CNT inside of rubber and an* Corresponding author.
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interfacial layer between them. The CNT is described by a modified
Morse potential with 19% strain at break of carbonecarbon bonds.
The model is applied to small and moderate strains but is not
compared to any experimental data.

In this paper, we present a constitutive model for CNT rein-
forced rubbers. The model is based on the polymer chain length
statistics recently applied in order to describe rubber elasticity and
anisotropic softening [18,20]. The reinforcement by CNTs is
explained by additional cross-linking which influences the prob-
ability density function of chain lengths. Polymer chains are
assumed to split by the cross-links into shorter chains, which leads
to the stiffening of the composite. The change in the probability
density function by the additional cross-linking is statistically
reasoned.

CNTs are much stiffer than the surrounding polymer phase,
which also causes a reinforcing effect. Additional stiffening also
results from the rotational constraint of CNTs whose length is very
large in comparison to the diameter. In the proposed model these
effects are not directly considered but taken into account by means
of the above mentioned change in the probability density function
of polymer chain lengths.

The paper is organized as follows. In Sect. 2 we recall the above
mentioned chain length statistics. Its change due to the additional
cross-linking by CNTs is discussed in Sect. 3. The so resulting
probability density function is further incorporated into a full
network model based on a numerical integration over the unit
sphere (Sect. 4). Finally, in Sect. 5, the model is validated in com-
parison to experimental data available in literature. Abbreviations
used in the paper are listed and explained in Table 1.

2. Polymer chain length statistics

According to the classical statistical theory of polymerization
the probability that a linear polymer molecule is composed of
exactly k segments is given by the expression [12].

PðkÞ ¼ pk�1ð1� pÞ; k ¼ 1;2;…; (1)

known as the geometric probability density function, where
0< p< 1 denotes the probability of the chain propagation while
1�p represents then the probability of the chain termination. These
are exactly the events that the polymer chain connects to a free
radical (monomer) with either two or one active end, respectively.
Representation (1) is based on the assumption of the classical
polymerization theory that p remains constant over the whole
polymerization process.

The chain length statistics briefly presented above assumes the
minimal number of chain segments available in the distribution to
be 1. The probability density function (1) can, however, be gener-
alized to an arbitrary minimal number of chain segments n as
follows

PðkÞ ¼ pk�nð1� pÞ; k ¼ n;nþ 1;… (2)

It a priori satisfies the normalization condition

X∞
k¼n

PðkÞ ¼ 1 (3)

for any n.
In the following we will need a continuous form of this proba-

bility density function. In this case we set

PðuÞ ¼ apu�nð1� pÞ; (4)

where u is a real valued number of segments and a is a normali-
zation factor. The latter one results from the normalization
condition

1 ¼
Z∞
n

PðuÞdu ¼ a
p� 1
ln p

(5)

as a ¼ ln p=ðp� 1Þ. By this means, the continuous probability
density function (4) can be given in the following exponential form
(cf. [33,34])

PðuÞ ¼ 1
D
e
n�u
D ; (6)

where

D ¼ � 1
ln p

: (7)

The most of the network models operate with the average
(mean) number of chain segments N. Thus, it is convenient to ex-
press P(u) in terms of N. To this end, we first obtain

N ¼ E½u� ¼
Z∞
n

PðuÞudu ¼ nþ D; (8)

where E[u] denotes the mean value of a random variable u while

D ¼ N � n: (9)

Thus, the parameter D (7) of the probability density function (6)
represents the difference between the average and the minimal
number of chain segments available in the distribution. In the
following, D will be considered as a material constant.

The probability density function (6) is illustrated in Fig. 1 for
n¼ 1 and different values of D.

Table 1
Abbreviations used in the paper and their expansions.

Abbreviation Expansion/meaning

CNT Carbon NanoTube
phr Parts per Hundred Rubber
CBR Chlorinated Butyl Rubber
BR Butadiene Rubber
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Fig. 1. Continuous probability density function (6) of the number of chain segments for
n¼ 1 and various values of the parameter D.

M. Itskov, E. Darabi / Composites Part B 90 (2016) 69e7570



Download English Version:

https://daneshyari.com/en/article/7212855

Download Persian Version:

https://daneshyari.com/article/7212855

Daneshyari.com

https://daneshyari.com/en/article/7212855
https://daneshyari.com/article/7212855
https://daneshyari.com

