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a b s t r a c t

The effective elastic moduli for carbon nanotube-based nanocomposites are derived and investigated.
The conducted analyses based on the numerical homogenization procedure employ a spatial periodically
arranged in a square array representative volume element and the finite element method. The trans-
versely isotropic material having aligned and uniformly distributed long carbon nanotubes is considered.
The perfect bonding between the carbon nanotubes and the matrix are assumed. Related to the trans-
versely isotropic nanocomposite the five elastic material constants are needed to completely describe the
elastic behavior. Based on the calculated material constants for the nanocomposite, the results are given
and compared with the other values presented in the literature. In general, the increase of the effective
material constants normalized by the matrix modulus is observed in comparison with pure polymeric
matrix.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The special attention is focused on the application of carbon
nanotubes (CNTs) as a polymeric composite reinforcement because
of their exceptional properties especially mechanical and electrical
that combine with the very low density and the high aspect ratio
[1e6]. The problem of the CNT/polymer nanocomposites is widely
discussed in the review papers, e.g., [7e9]. Related to advanced
nanocomposites, the numerical computations are undisputable
important due to the fact that the experimental costs are very high.
The numerical simulations can help to understand behavior of the
material and give the basic knowledge further used in a design of
such nanocomposites. Introducing the continuum mechanics
assumption, the discrete atomistic structure may be neglected,
homogenizing the behavior of molecules and atoms components.
Validity of the above assumptions relating the applicability of the
continuum-based theories vs. the physical models constitutes still
an open problem.

Different trends and methods are observed in modeling 3D
nanocomposites. First of all it is worth to mention that Odegard
et al. [10] have applied the energy method to analyze the effective
properties of the transversely isotropic nanofiber modeled as a

space set of trusses describing a single-walled CNT, an interphase
and a polymer. Ashrafi and Hubert [11] have used this method to
predict the effective properties of the single-walled CNT (SWCNT)
twisted arrays. In both cases, the effective values were used in the
micromechanical analysis of the nanocomposites based on the
traditional Mori-Tanaka homogenization method. Recently, in ho-
mogenization theories some innovative methods are proposed, see
e.g., the papers of Barretta et al. [12] and Greco and Luciano [13]. Liu
and Chen [14,15] have used the 3-D stressestrain relations con-
cerning the normal stresses and strains to evaluate the effective
properties of the CNT-based composites using the representative
volume element (RVE) and the finite element method (FEM). They
have computed four constants out of five required constants
essential to model the elastic behavior of the transversely isotropic
composite material. Three (and two, resp.) load cases were used to
obtain the four independent material properties for the cylindrical
RVE [14] and the square RVE [15], respectively. Similar approach
was used by HernandezePerez and Aviles [16] to study the influ-
ence of interface on the effective mechanical properties of CNT-
based nanocomposites. Recently, the mechanical properties of
CNT-reinforced epoxy composite were also presented in the work
of Zuberi and Esat [17]. Currently, in the modeling of carbon
nanotubes the nonlocal approaches based on the Erigen's pio-
neered works [18,19] are considered, see e.g., the papers of Ped-
dieson et al. [20] or Barretta et al. [21e24].* Corresponding author.
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The consistent description of the elastic properties for CNT is
available in the literature (see e.g., Refs [25,26]) but there is still lack
of complete numerical evaluation of the effective material con-
stants for the CNT-based nanocomposites [10,11,14e16].

In the present paper we focused on the numerical description of
the CNT-based polymeric nanocomposites to obtain the complete
elastic behavior for the proposedmaterial model. The present work
is the extension of our previous studies [27,28]. The computations
of the effective material properties for the CNT-reinforced nano-
composites are joined with the global mechanical response of the
RVE therefore the continuum mechanics approach seems to be
acceptable for such an analysis.

1.1. Continuum mechanics theoretical background

The Hook law for a composite material can be written as
follows:

sa ¼ C*
abεb (1)

where sa and εb are the average stresses and strains over the vol-
ume of the RVE, respectively, C*

ab are the effective elastic moduli
[29] whose total number of independent components is controlled
by the prescribed symmetry (a, b¼ 1..6e see Ref. [30]). Assuming a
composite material with unidirectional parallel fiber reinforce-
ment, the transverse isotropy mechanical model is used, where the
isotropic plane (2e3) is perpendicular to the longitudinal direction
(1) of the fibers. Thus, from the whole specimen a square repre-
sentative subregion (RVE) can be selected in the form shown in
Fig. 1.

The stressestrain relation (1) for a transversely isotropic body
may be written in the form:
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where the typical six-by-six (Kelvin-Voigt) matrix notation has
been applied. The transversely isotropic material is described by
the set of five equations (the fifth and the sixth equation are equale
see Eq. (2)) having five effective independent stiffness moduli such
as: C*

11, C
*
22, C

*
12, C

*
23, and C*

66. The effective elastic moduli can be
used to compute the five elastic properties of the homogenized
nanocomposite material properties, such as the longitudinal and
transversal Young's moduli E*11 and E*22, the longitudinal and
transversal Poisson's ratios n*12 and n*23, and the longitudinal shear
modulus G*

12 as follows:
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The last missing shear modulus in the transversal direction G*
23

may be calculated in the following way:
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(4)

In 1885 H. Helmholtz proved that the infinitesimal displacement
of the deformable body can be expressed as the sum of three
components: the translational displacement u0i , the rigid body
displacement and the displacement due to pure elastic de-
formations ε

0
ij. Assuming that the rigid body deformations are

negligibly small the displacements components can be written as
follows:

ui ¼ u0i þ ε
0
ijxj; i; j ¼ 1;2;3 (5)

For the assumed RVE the six components of the strains ε
0
ij are

approximated in the following manner:

uiða1; x2; x3Þ � uið � a1; x2; x3Þ ¼ 2a1ε
0
i1

uiðx1; a2; x3Þ � uiðx1;�a2; x3Þ ¼ 2a2ε
0
i2

uiðx1; x2; a3Þ � uiðx1; x2;�a3Þ ¼ 2a3ε
0
i3

(6)

where

�a1 � x1 � a1
�a2 � x2 � a2
�a3 � x3 � a3

(7)

The 2ajε0ij is the applied displacement used to enforced a strain
ε
0
ij over a distance 2aj (Fig. 1) and the ui are assumed to be the
boundary displacements. The volume average strain is equal the
applied strain εb ¼ ε

0
ij.

To calculate the five unknown elastic moduli the set of five re-
lations derived from Eq. (2) should be solved. Thus, the components
of the effective elastic matrix are determining solving different
elastic models of RVE subjected to the appropriate boundary con-
ditions defined in (6) where only one component of the applied
strain ε

0
ij is different from zero for each of the loading problems. In

order to make the computations easier the unit value of applied
stain ε

0
ij ¼ 1 was chosen. As a result, using the boundary conditions

Fig. 1. Representative volume element (RVE) of carbon nanotube based
nanocomposite.
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