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In this paper, for the first time, the nonlinear motion characteristics of a hinged-hinged third-order shear
deformable microbeam are examined, based on the modified couple stress theory and the third-order
shear deformation theory. The extensibility of the microbeam is modelled by taking into account the
longitudinal displacement. The nonlinear equations governing the longitudinal, transverse, and rota-
tional motions are derived by means of Hamilton's principle in conjunction with the modified couple
stress theory (to take into account small-scale effects). The three coupled nonlinear partial differential
equations are discretized via the Galerkin method and the resulting set of ordinary differential equations
is solved by means of the pseudo-arclength continuation technique and via direct time-integration. The
effects of the system parameters on the behaviour of the microbeam are studied. Results are presented in
the form of frequency-responses and force-responses. Points of interest in the parameter space are also
highlighted in the form of time histories, phase-plane portraits, and fast Fourier transforms (FFTs).
Moreover, the similarities and differences in the response of the system obtained via the modified couple

stress and classical continuum mechanics theories are discussed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for microscale continuous elements [1,2] such as
microbeams [3,4], microplates [5—11], and microshells [12] is
increasing rapidly, mainly due to their growing application in in-
dustry. In particular, microbeams are present in biosensors,
microactuators, microswitches, vibration and shock sensors, and
biomechanical devices. In almost all of these applications, the
microscale structure is subject to a source of energy, causing these
elements to either deform or oscillate; analyzing the motion/
deformation behaviour of these systems is hence essential for
optimization purposes and also to achieve better design factors.

One important barrier in the theoretical analysis of microscale
continuous elements is their inherent dynamical dependence on
size; many experiments [13,14] reported that these systems display
a size-dependent deformation behaviour, which cannot be pre-
dicted by the classical continuum mechanics theories — the
modified couple stress theory is employed in this paper to over-
come this problem by taking into account small-scale effects.

* Corresponding author.
E-mail addresses: mergen@uow.edu.au (M.H. Ghayesh), hamed.farokhi@mail.
mcgill.ca (H. Farokhi).

http://dx.doi.org/10.1016/j.compositesb.2015.03.032
1359-8368/© 2015 Elsevier Ltd. All rights reserved.

In some applications, the microscale continuous elements are
subject to forces from other non-ideal elements or supports; these
effects are taken into account in this study by additionally sup-
porting the microbeam by an intermediate nonlinear spring.

The motion characteristics of microbeams have been investi-
gated extensively in the literature. These studies can mainly be
classified into two groups in terms of the models being considered.
The first class analyzed the motion characteristics of microbeams
based on either the Euler—Bernoulli or Timoshenko beam models
[15—20]. The second class, on the other hand, employed higher-
order shear deformation beam theories in the modelling.

1.1. Literature review on the first class

The number of studies belonging to the first class of analysis is
quite large [21—26]. Reviewing the linear aspects of the problem,
for example, Kong et al. [27] obtained the natural frequencies of
a Euler—Bernoulli microbeam based on the modified couple stress
theory. A similar analysis was performed by Ma et al. [28], but for a
Timoshenko microbeam. Ke and Wang [29] examined the dynamic
stability of a functionally graded Timoshenko microbeam employ-
ing the modified couple stress theory. Wang et al. [30] developed a
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Timoshenko microbeam model based on a strain gradient elasticity
theory and examined its static bending and free oscillations. These
studies were extended to nonlinear models, for instance, by
Ramezani [31], who utilized the method of multiple timescales to
examine the nonlinear free dynamics of a Timoshenko microbeam
on the basis of a strain gradient elasticity theory. Asghari et al. [32]
contributed to the field by studying the size-dependent nonlinear
dynamics of a Timoshenko microbeam based on the modified
couple stress theory. Mohammadi and Mahzoon [33] investigated
the thermal effects on the nonlinear post-buckling behaviour of
a Euler—Bernoulli microbeam based on the modified strain
gradient theory.

1.2. Literature review on the second class

The second class of analysis, concerned with the analysis of
higher-order microbeam models, is not large. For example, Nateghi
et al. [34] investigated the size-dependent buckling behaviour of
functionally graded microbeams employing the classical theory and
first- and third-order shear deformation beam theories. Salamat-
talab et al. [35] examined the linear static and dynamic responses
of a shear deformable functionally graded microbeam employing
the modified couple stress theory along with the third-order shear
deformation theory. Simsek and Reddy [36] analyzed the linear
buckling response of a functionally graded microbeam embedded
in an elastic medium based on the modified couple stress theory
and a unified higher order beam theory. The investigations were
continued by Sahmani and Ansari [37], who investigated the linear
buckling response of a third-order shear deformable functionally
graded microbeam subject to temperature variations, employing a
strain gradient elasticity theory. Mohammad-Abadi and Danesh-
mehr [38] employed the modified couple stress theory in order to
analyze the size-dependent buckling behaviour of higher-order
microbeams. Akgoz and Civalek [39] contributed to the field by
analyzing the buckling behaviour of a higher-order shear deform-
able functionally graded microbeam utilizing new shear correction
factors. Zhang et al. [40] developed a size-dependent functionally
graded microbeam model based on a strain gradient elasticity
theory and a third-order shear deformation theory.

1.3. Contributions of the current study to the field

This paper, for the first time, examines the nonlinear motion
characteristics of an extensible third-order shear deformable
microbeam with an intermediate spring-support. Based on the
modified couple stress theory, the microbeam is modelled by
means of the third-order shear deformation theory retaining the
longitudinal displacement and inertia; this is also the first time that
extensibility is retained in the nonlinear analysis of third-order
shear deformable microbeams. Taking into account small-size ef-
fects, via the modified couple stress theory, the potential and ki-
netic energies as well as works due to damping and external
excitation are obtained in terms of the longitudinal and transverse
displacements and rotation. Hamilton's principle is then employed
to derive the longitudinal, transverse, and rotational equations of
motion. These three coupled nonlinear partial differential equa-
tions are then discretized through use of the Galerkin method,
yielding a set of second-order nonlinear ordinary differential
equations with coupled terms. This set is then, after diagonalizing
the mass matrix, double-dimensionalized via a change of variables;
the resultant equations are then solved via the pseudo-arclength
continuation technique and a direct time-integration method,
based on the variable step-size Runge-Kutta scheme. Numerical
results are presented in the form of frequency-responses, force-
responses, time traces, phase-plane portraits, and fast Fourier

transforms (FFTs). The effect of the linear and nonlinear stiffness
coefficients of the spring-support as well as its location on the
motion characteristics of the shear deformable microbeam is
examined. Moreover, a comparison is made between the motion
characteristics of the microbeam based on the modified couple
stress and classical continuum mechanics theories.

2. Nonlinear coupled equations of motion

Fig. 1 shows a shear deformable microbeam of length L,
thickness h, Young's modulus E, cross-sectional area A, and area
moment of inertial I. The microbeam is simply supported at both
ends and subjected to a distributed harmonic excitation load per
unit length F(x)cos(wt), in the transverse direction. A nonlinear
spring is attached to the centreline of the microbeam at a distance
xs from the left end; k1 and k; are the linear and nonlinear stiff-
ness coefficients of the spring-support. u(x,t) and w(x, t) represent
the displacements in longitudinal and transverse directions and
¢(x, t) denotes the rotation of the transverse normal.

The equations of motion have been derived assuming that: (1)
the cross-sectional area is uniform along the length of the micro-
beam [41]; (2) a geometric nonlinearity, due to the mid-plane
stretching is considered [42—47]; (3) a third-order shear defor-
mation model is considered; (4) there is no warping in the system
[48—50]; (5) the spring is attached to the centreline of the micro-
beam with the effect only in the transverse direction.

The components of the displacement vector u of a point located
at a distance z from the mid-plane are given by
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u3(x,z,t) = w(x, t),

which results in the following non-zero components of the strain
tensor
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The symmetric curvature tensor % can be written as a function
of the displacement vector as [51]

(2)

y— % ([V(Cul‘l(u))] 4 [V(Cul‘l(u))]T>7 (3)

which according to Eq. (1), gives the following non-zero compo-
nents of the symmetric curvature tensor

F(x)cos(wf)

Fig. 1. Schematic representation of a shear deformable microbeam, additionally con-
strained by a nonlinear spring-support.
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