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a b s t r a c t

An engineering formula for the theoretical stress concentration factor of orthotropic notched plates under
tension is provided, as a function of the material elastic constants and the Kt of the corresponding isotro-
pic case. The accuracy and limits of applicability of the new solution are discussed by comparison to data
from the literature and results from FE analyses on notched geometries of practical interests. The pro-
posed solution represents a very useful tool to estimate the stress concentration factor of notched ortho-
tropic plates, composite orthotropic laminae, orthotropic unidirectional laminates and homogenised
orthotropic composite laminates.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Geometrical variations, such as notches, grooves or holes,
unavoidably exist in engineering components, being often respon-
sible for crack formation under static and cyclic conditions.

This is the reason why the study of stress distributions around
notches has received a large attention in the past and recent
literature. Blunt cracks in isotropic plates have been analysed by
Creager and Paris [1] who were able to give the closed form
solution for the local stress fields for Mode I, II and III loadings.
The above mentioned solution was later extended to blunt
V-notches, including the effect of the notch opening angle, both
under linear elastic [2–5] and elastic plastic conditions [6,7]. It is
also worth mentioning that a large number of solutions for central
holes in isotropic plates is present in the book by Savin [8].

Moving to orthotropic plates, comparatively few works can be
found in the literature, mainly oriented to refine the classical anal-
ysis for anisotropic plates with elliptical holes by Lekhnitskii [9]
and to make it applicable to composite laminates (see, among
the others, Bonora et al., [10,11], Chern and Tuttle [12]). More
recently, Ukadgaonker and Rao [13] carried out an analytical study
of the stress distributions in an orthotropic plate with triangular
holes, while the case of an irregular shaped hole has been later con-
sidered by Ukadgaonker and Rao [14] and by Ukadgaonker and
Kakhandki [15], where an excellent literature review on the topic
can be found, as well.

The design against fatigue or brittle failure of blunt notched
engineering components is often based on strength criteria,
according to which the stress values in the stress concentration
regions are compared to the fatigue or static strength of the base
material, respectively. This process is complicated by the fact that
the stress state close to a notch is inherently multiaxial and, under
such a stress state, the fatigue behaviour of composite materials
might be very complex [16–21].

In the engineering practice, the maximum stress at a blunt
notch root is correlated to the nominal stress using the theoretical
stress concentration factor. However, different from isotropic
materials, in orthotropic plates Kt depends not only on the geome-
try but also on the elastic material properties [8,9,22–24]. This
hampers the possibility for engineers to use design charts or
approximated relationships, as those provided in Refs. [25–30],
allowing a rapid evaluation of Kt.

Although advanced computational technology has made it pos-
sible to calculate the stress concentration factor for any notched
geometry and material, practical expressions, providing a rapid
evaluation of this parameter, remain very useful in the engineering
practice. To this end, starting from some analytical derivations
based on classical solutions of the orthotropic theory of elasticity
[9], an engineering formula to estimate the theoretical stress con-
centration factor of orthotropic notched plates under tension is
provided, involving the material elastic properties and the Kt of
the corresponding isotropic case, which is geometry-dependent,
only.

Accuracy and limits of applicability are discussed by comparing
the approximate solution to numerical results from the literature
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and from FE analyses carried out by the authors, considering
notched plates of practical interest.

The proposed solution represents a useful tool to estimate the
stress concentration factor of notched orthotropic plates, compos-
ite orthotropic laminae, orthotropic unidirectional laminates and
homogenised orthotropic composite laminates.

2. Material behaviour

Although the notch tip stress state in a thick plate is always, by
very nature, three-dimensional, the adoption of two dimensional
hypotheses, such as plane stress or plane strain, allows to remove
many difficulties encountered in the three-dimensional anisotropic
elasticity theory. Moreover under particular conditions, plane
hypotheses can be representative of the actual three-dimensional
behaviour [31,32]. Accordingly, in the present work notched ortho-
tropic plates under plane stress or plane strain conditions are con-
sidered only.

For plane stress problems (r3 = s13 = s23 = 0) the elastic ortho-
tropic stress–strain relationships can be formulated on the basis
of four independent elastic constants:
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For plane strain problems (e3 = c13 = c23 = 0), instead, Hooke’s law in
terms of compliance matrix would read as:
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where the constants Bij can be expressed in terms of the complianc-
es Sij:
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Accordingly, from the mathematical point of view, the plane stress
and plane strain problems are identical except for the values of elas-
tic constants entering into the reduced strain–stress relations.

3. Analytical remarks

3.1. The elliptical hole in an infinite plate under tension

Consider an elliptical hole in an infinite orthotropic plate under
tension, the direction of the far applied uniaxial tension equating
the 1 principal elasticity direction. The stress concentration factor
for this problem, referred to the gross section, is [9]:

Ktg ¼ 1þ ðb1 þ b2Þ
ffiffiffiffi
a
q

r
ð4Þ

where a is the notch depth (major semi-axis of the ellipse), q is the
notch root radius and u1;3 ¼ �ib1 and u2;4 ¼ �ib2 are the conjugate
roots of the following equation [8,9]:

T11l4 þ ð2T12 þ T66Þl2 þ T22 ¼ 0 ð5Þ

Eq. (5) is the characteristic equation linked to the governing equa-
tion of the plane orthotropic theory of elasticity to be satisfied by
the Airy stress function. Since li always occur in conjugate pairs,
it is possible to arrange, without loss of generality, that b1 and b2

are real and positive [9].

In Eq. (5) Tij equate the terms of the compliance matrix, Sij, for
plane stress. In this case, invoking the engineering elastic
constants:
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it results:
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For plane strain conditions instead, Tij = Bij. It is worth noting that
for an isotropic material b1 = b2 = 1, so that f = 2.

Invoking the theoretical stress concentration factor for the cor-
responding isotropic case [33,34]:

eK tg ¼ 1þ 2
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Eq. (4) can be conveniently re-written in the following form:

Ktg ¼ 1þ f
2
ðeK tg � 1Þ ð9Þ

One should note that in the case of a wide orthotropic composite
plate with a central hole eK tg ¼ 3 and Eq. (9) gives:
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in agreement with the expression reported in Ref. [35] and widely
used for composite materials.

3.2. The edge notch in a semi-infinite plate under tension

With reference to edge notches in semi-infinite orthotropic
plates under tension Chiang [36] proved that the theoretical stress
concentration factor can be written as:

Ktg ¼ 1þ f
Z

f 0ðnÞ
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where f is the function describing the notch boundary. Accordingly,
the function f0(n)/n does not depend on the material elastic proper-
ties, so that Eq. (9) holds valid also for semi-infinite plates with
shallow edge notches of any shape.

3.3. The deep hyperbolic notch

The stress concentration factor, referred to the net section, for a
tensioned orthotropic plate weakened by two symmetric deep
hyperbolic notches is [9]:
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where 2 h is the cross-sectional width and q is the notch root
radius.

When the notch is sharp, (q/h ? 0), ArcTan bi
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h
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towards p/2, and Eq. (12) can be approximated by:
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Under the same conditions, the stress concentration factor for the
corresponding isotropic case is [34]:
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