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a b s t r a c t

Layer-wise and equivalent single layer plate models for magneto-electro-elastic multiphysics laminates
are presented in a unified framework. They are based on variable kinematics and quasi-static behavior of
the electromagnetic fields. The electromagnetic state of each single layer is preliminary determined by
solving the corresponding governing equations coupled with the proper interface continuity and external
boundary conditions. By so doing, the electromagnetic state is condensed into the plate kinematics and
the layer governing equations are inferred by the principle of virtual displacements. This approach
identifies effective mechanical layers, which are kinematically equivalent to the original smart layers.
These effective layers are characterized by stiffness, inertia and load properties which take the multifield
coupling effects into account as their definitions involve the electromagnetic coupling material proper-
ties. The layers governing equations are finally assembled enforcing the mechanical interface conditions.
This allows to obtain the smart plate resolving system, which involves primary mechanical variables only.
Results for thick simply-supported multilayered plates are obtained by an exact closed-form Navier-type
solution and compared with benchmark 3D solutions to investigate the features and accuracy of the
proposed modeling approach.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The growing development and employment of smart materials
open towards the possibility to make structures with multi-func-
tional capabilities, related to the inherent coupling between
mechanical and electrical fields, like in piezoelectrics, or among
mechanical, electrical and magnetic fields, like in magneto-elec-
tro-elastic (MEE) materials. The effects of coupling among different
physical fields can be successfully applied to a lot of technologies
such as structural health monitoring, vibration control and energy
harvesting, only to cite a few. In this framework, the use of multi-
layered and/or functionally graded structures appears very effec-
tive and reliable [1] and efficient modeling tools are then required
for their analysis and design. Smart piezoelectric composite lami-
nates and their modeling approaches received a lot of attention in
the literature [2,3], whereas MEE materials and structures gained
interest for their potential application only recently with the
accompanying research activities on their modeling (e.g. [4–15]).

For composite laminates modeling and design, 2D plate theories
have been developed with the aim of reducing the analysis effort
preserving, as well, a suitable level of accuracy. These theories

are classified into layer-wise (LW) and equivalent single layer
(ESL) approaches [16]. The LW approach enables high accuracy
with an associated computational cost that grows as the number
of layers increases. On the other hand, ESL plate theories do not
present this drawback as their solution complexity is independent
from the number of layers resulting in more affordable analysis
procedures; however they are generally less accurate than the
layer-wise ones, especially for thick laminates whose reliable anal-
ysis generally demands higher order theories.

To formulate and implement both LW and ESL refined higher
order theories for multilayered plates, Carrera proposed a powerful
approach known as CUF (Carrera Unified Formulation) whose
underlying ideas, principles and implementation issues for
mechanical problems can be found in Refs. [17,18]. CUF offers a sys-
tematic procedure to generate different order refined plate models,
considering the order of the theory as a free parameter of the for-
mulation. The CUF was applied to smart laminates with both piezo-
electric [19–25] and magneto-electro-elastic [26–28] layers.

Plate theories for multilayered smart laminates are generally
formulated taking the electric and magnetic primary variables as
independent state variable of the problem. More recently, Milazzo
[29] proposed modeling of smart MEE laminates through the con-
cept of an effective mechanical plate resulting from the condensa-
tion of the electromagnetic state into the mechanical variables,
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which provides for a resolving system involving kinematical vari-
ables only. By using this approach, a family of ESL models based
on refined higher order plate theories has been derived through
the CUF technique [30]. It is worth noting that this kind of model-
ing strategy shows appealing as it could take advantage of the
well-established solution techniques and tools available for the
mechanics of multi-layered plates. According with this rationale,
the objective of the present work is to extend and generalize this
approach to derive both LW and ESL refined models in a unified
framework based on the CUF and highlight its features and limits
with respect to the modeling assumptions.

The paper is organized as follows. The basic assumptions and
governing equations are preliminary introduced in Section 2. Then,
the model for single isolated smart layers with variable kinematics
is formulated in Section 3 and in turn used to build the multilayered
plate LW or ESL model as described in Section 4. In Section 5 closed
form solution and results for simply-supported rectangular plates
are presented and discussed. Finally, conclusions are drawn. Some
definitions and derivations are presented in Appendices A and B to
make the paper self-consistent and avoid making heavy the reading.

2. Governing equations and basic assumptions

Consider a multilayered plate referred to a coordinate system
with the x3 axis directed along the thickness and the x1 and x2 coor-
dinates spanning the plate mid-plane X, whose boundary is
denoted by @X. The plate consists of N layers of homogeneous
and orthotropic magneto-electro-elastic materials having poling
direction parallel to the x3-axis. Piezoelectric and elastic layers
are obviously subcases of the more general magneto-electro-elastic
case. The jth layer has constant thickness tj ¼ hj � hj�1, being hj�1

and hj the x3 coordinates of its bottom and top faces, respectively.
The bottom and top surfaces of the plate are identified by x3 ¼ hl

and x3 ¼ hu, respectively. The plate is subjected to mechanical loads
and to electric and magnetic actions applied on the top and bottom
surfaces. For convenience’ sake, a layer reference system is also
introduced with a normalized thickness coordinate fj defined as

fk ¼
2

hj � hj�1
x3 �

hj þ hj�1

hj � hj�1
ð1Þ

2.1. Primary variables and gradient equations

As the elastic waves propagate several order of magnitude
slower than the electromagnetic ones, the quasi-static approxima-
tion for the electromagnetic state is considered. Therefore, to
describe the smart plate response the displacements
u ¼ u1 u2 u3f gT , the electric potential U and the magnetic scalar
potential W are used as primary variables [31].

The strain field e is suitably partitioned into the in-plane com-
ponents ep ¼ e11 e22 e12f gT and out-of-plane components
en ¼ e13 e23 e33f gT and, accordingly, the linear strain–displace-
ments relationships read as

ep ¼ Dpu ð2aÞ
en ¼ DnuþDx3 u ð2bÞ
where the following differential operators are introduced

Dp ¼

@
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0 0

0 @
@x2

0
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ð3cÞ

being Di the 3� 3 identity matrix.
Also the electric field E and the magnetic field H are partitioned

into their in-plane and out-of-plane components, which specify as

Ep ¼ E1 E2f gT
;En ¼ E3f g; Hp ¼ H1 H2f gT and Hn ¼ H3f g. By

introducing the following differential operators

$p ¼
@
@x1

@
@x2

" #
ð4aÞ

$n ¼ @
@x3

h i
ð4bÞ

the electric and magnetic gradient equations are written as

Ep ¼ �$pU ð5aÞ

En ¼ �$nU ð5bÞ

Hp ¼ �$pW ð6aÞ

Hn ¼ �$nW ð6bÞ

2.2. Constitutive equations

Consistently with the variables partition introduced in the
previous section, the constitutive law for an orthotropic mag-
neto-electro-elastic composite having electric and magnetic poling
directions parallel to the x3�axis is compactly written as

rp

rn

Dp

Dn

Bp

Bn

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼

Cpp Cpn 0 �eT
np 0 �qT

np

Cnp Cnn �eT
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nn �qT
pn �qT

nn
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26666666664

37777777775

ep

en

Ep

En

Hp

Hn
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9>>>>>>>>=>>>>>>>>;
ð7Þ

where C ij are matrices containing the elastic stiffness coefficients,
the �ij and lij matrices collect the dielectric constants and magnetic
permeabilities, respectively, whereas eij; qij and dij collect the
piezoelectric, piezomagnetic and magnetoelectric coupling coeffi-
cients. Eventually, for convenience in the following manipulations,
the matrices epn and qpn are partitioned in their rows which are
denoted by epnc and qpnc

, respectively, being c the row number. As
we deal with multilayered plates the constitutive law matrices
depend on the x3 coordinate and in particular, for the paper scope,
they are considered constant inside each layer.

2.3. Governing equations

The problem governing equations can be obtained by the
extension of the Principle of Virtual Displacements (PVD) to
magneto-electro-elastic structures, which states [31]Z

V
deT

prpþdeT
nrn�dET

pDp�dET
nDn�dHT

pBp�dHT
nBn

� �
dV

¼
Z

V
duT�f �dU�q
� �

dV�
Z

V
qduT €udVþ

Z
@V

duT�t�dUQ
� �

d@V ð8Þ

where superimposed dots denote time derivatives, �t and �f are the
applied surface tractions and body forces, Q and �q are the surface
and body electric charge density, q is the mass density and d
denotes virtual variations. By using Eqs. (2), (5) and (6) and
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