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a b s t r a c t

This paper presents a free vibration analysis of functionally graded plates (FGPs) resting on elastic
foundation. The displacement field is based on a novel non-polynomial higher order shear deformation
theory (HSDT). The elastic foundation follows the Pasternak (two-parameter) mathematical model. The
governing equations are obtained through the Hamilton’s principle. These equations are then solved
via Navier-type, closed form solutions. The fundamental frequencies are found by solving the eigenvalue
problem. The degree of precision of the current solution can be noticed by comparing it with the 3D and
other closed form solutions available in the literature.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a type of heteroge-
neous composite material in which the properties change
gradually over one or more directions. This material is produced
by mixing two or more materials in a certain volume ratio.
Material properties of FGMs vary along the material size depending
on a function. FGMs have been proposed, developed and success-
fully used in industrial applications since 1980s [1]. Nowadays,
FGMs are an alternative materials widely used in aerospace,
nuclear, civil, automotive, optical, biomechanical, electronic,
chemical, mechanical and shipbuilding industries.

Classical composites structures such as fiber reinforced plastic
(FRP) suffer from discontinuity of material properties at the inter-
face of the layers and constituents. Therefore the stress fields in
these regions create interface problems and thermal stress concen-
trations under high temperature environments. Furthermore, large
plastic deformation of the interface may trigger the initiation and
propagation of cracks in the material [2]. These problems can be
decreased by gradually changing the volume fraction of constitu-
ent materials and tailoring the material for the desired application.

Because of the widespread applications of foundations in engi-
neering, several models to describe the mechanical behavior of
elastic foundations were successfully formulated. Among them, a
one-parameter model to describe the mechanical behavior of

elastic foundations was discussed by Winkler [3], whereas Paster-
nak [4] presented a two-parameter model, which considers the
shear deformation between the springs over the one-parameter
model. The Winkler model can be considered a special case of
Pasternak model by setting the shear modulus to zero. However,
not many works on composites on elastic foundation based on
HSDT exist.

Regarding the dynamic behavior of FGMs, many papers have
been published recently. Leissa [5] presented 3D exact solution
for the free vibration analysis of FGPs. Carrera [6] presented the
free vibration analyses of layered plates, cylindrical and spherical
shells made of isotropic and orthotropic layers for simply
supported boundary condition. The transverse normal stress
effects were included in the displacement model by allowing
different polynomial orders. Liu and Liew [7] analyzed free vibra-
tion of rectangular plates with mixed boundary conditions on the
basis of the first order shear deformation theory (FSDT). Matsunaga
[8] investigated a two-dimensional polynomial HSDT for analyzing
thick simply supported rectangular plates resting on elastic
foundations.

Vel and Batra [2] developed a 3D exact solution for free and
forced vibrations of simply supported FGPs. Lam et al. [9] used
Green’s functions and presented canonical exact solutions for
bending, buckling and vibration of Levy-type plates resting on
elastic foundation. Zhou et al. [10] were based on a three dimen-
sional Ritz method with Chebyshev polynomials. Qian et al. [11]
studied the static and dynamic deformation of thick FGPs. The
author used an HSDT solved by meshless local Petrov–Galerkin
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method. Malekzadeh and Karami [12] studied the free vibration of
rectangular plates of continuously varying thickness on two-
parameter elastic foundations by using the differential quadrature
method (DQM).

Batra and Jin [13] considered FGPs which were obtained by
changing the fiber orientation. Free vibration results were provided
by using the finite element method. Shufrin and Eisenberger [14]
presented a numerical calculation of the natural frequencies and
buckling loads for thick elastic rectangular plates with various
combinations of boundary conditions using HSDT. Ferreira et al.
[15] analyzed the free vibration of FGPs based on the FSDT and
HSDT using the Mori–Tanaka homogenization method and the glo-
bal collocation method with multiquadratic radial basis functions.
Shimpi and Patel [16], based on the interesting work on the 2-
unknowns plate theory, studied the free vibrations of orthotropic
plates.

Uymaz and Aydogdu [17] also developed a 3D vibration solu-
tion for FGPs. Huang et al. [18] investigated the benchmark solu-
tions for thick FGPs resting on Winkler–Pasternak elastic
foundations using the 3D elasticity theory. Nagino et al. [19] pre-
sented 3D free vibration analysis of isotropic rectangular plates
with any thicknesses and arbitrary boundary conditions using
the B-spline Ritz method based on the elasticity theory.

Lu et al. [20], based on the 3D elasticity theory, studied the free
vibration analysis of FG thick plates resting on elastic foundation.
Zhao et al. [21] presented a free vibration analysis of FGPs by using
the element-free kp-Ritz method. Malekzadeh [22] investigated
free vibration analysis of thick FGPs resting on elastic foundations
based on 3D elasticity theory using the DQM. Talha and Singh [23]
investigated the static and free vibration analysis of FGPs by using
the finite element method (FEM) and a polynomial HSDT. Hosseini-
Hashemi et al. [24] presented an exact closed form Levy-type solu-
tion based on the Reddy’s HSDT.

New non-polynomial HSDTs for classical and advanced compos-
ite plates and shells were developed by Mantari et al. [25,26] and
Mantari and Guedes Soares [27]. Navier-type, closed form solu-
tions were provided for the static and free vibration analysis of
simply supported boundary conditions. Neves et al. [28,29], pre-
sented a sinusoidal and a hybrid type quasi-3D hyperbolic shear
deformation theory for static and free vibration analysis of FGPs.
Sheikholeslami and Saidi [30] studied the free vibration analysis
of FGPs resting on two-parameter elastic foundation using a HSDT
and an analytical approach. The authors expanded the displace-
ment components in the thickness direction using the Legendre
polynomials. Mechab et al. [31] considered the static and dynamic
analysis of FGPs with new non-polynomial shear strain shape func-
tion (hyperbolic). Thai and Kim [32] developed a HSDT of four
unknowns for bending and free vibration analysis of FGPs.

Jin et al. [33] presented a 3D exact solution for the free vibra-
tions of thick FGPs with general boundary conditions. Akavci [34]
presented a free vibration analysis of FGPs on elastic foundation
applying a non-polynomial HSDT and an optimization procedure.

In the present paper, the free vibration analysis of FGPs resting
on elastic foundations is studied. This novel non-polynomial HSDT
accounts for adequate distribution of the transverse shear stresses
through the plate thickness and tangential stress-free boundary
conditions on the plate boundary surface, thus a shear correction
factor is not required. The mechanical properties of the plates are
assumed to vary in the thickness direction according to a power
law distribution in terms of the volume fractions of the constitu-
ents. The governing equations of a type of FGPs resting on elastic
foundation are derived by employing the Hamilton’s principle.
These motion equations are then solved via Navier solution. As a
result, fundamental frequencies are found by solving eigenvalue

problem. The accuracy of the present code is verified by comparing
it with HSDT’s solutions available in literature.

2. Theoretical formulation

2.1. Functionally graded plates

A rectangular plate of uniform thickness ‘‘h’’, length ‘‘a’’, and the
width ‘‘b’’, made of a FGM and resting on elastic foundation is
shown in Fig. 1. The rectangular Cartesian coordinate system x, y,
z, has the plane z = 0, coinciding with the mid-surface of the plate.
The material properties vary through the thickness with a power
law distribution, which is given below (see Fig. 2):

PðzÞ ¼ ðPt � PbÞV ðzÞ þ Pb;
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where P denotes the effective material property, Pt and Pb denote
the property of the top and bottom faces of the plate, respectively,
and ‘‘p’’ is the exponent that specifies the material variation profile
through the thickness. The effective material properties of the plate,
including Young’s modulus, E, and shear modulus, G, vary according
to Eq. (1a,b), and Poisson ratio, ‘‘v’’ is assumed to be constant.

2.2. Displacement base field

The displacement field satisfying the conditions of transverse
shear stresses (and hence strains) vanishing at a point (x, y, ±h/2)
on the outer (top) and inner (bottom) surfaces of the plate, is given
as follows:

�uðx; y; zÞ ¼ uðx; yÞ þ z y�h1 �
@w
@x

� �
þ f ðzÞh1;

�vðx; y; zÞ ¼ vðx; yÞ þ z y�h2 �
@w
@y

� �
þ f ðzÞh2;

�wðx; y; zÞ ¼ w;

ð2a-cÞ

where �u; �v ; �w, are displacements in the x, y, z directions, u, v and w
are mid-plane displacements, h1 and h2 are rotations of normal to
the mid-plane about y- and x-axis. u, v, w, h1 and h2 are the five
unknown displacement functions of mid-plane of the plate, whilst
y� ¼ �f 0 h

2

� �
. f(z) represents the shear strain shape function for deter-

mining the appropriate distributions of the transverse shear strains
and stresses along the thickness and given as:

f ðzÞ ¼ zem cosðnz=hÞ ð3Þ

The appropriate value of the parameters ‘‘m’’ and ‘‘n’’ plays an
important role in the accuracy of the present HSDT, and conse-
quently need to be calculated. As usual, when proposing a new
HSDT, it is important to obtain close to 3D exact solutions. The
selection of these parameters will be discussed in the numerical
results section.

2.3. Kinematic relations and constitutive relations

In the derivation of the necessary equations, small strains are
assumed (i.e., displacements and rotations are small, and obey
Hooke’s law). The linear strain expressions derived from the dis-
placement model of Eqs. (2a–c), valid for thin, moderately thick
and thick plate under consideration are as follows:
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