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a b s t r a c t

The finite deformation response of fiber-reinforced hyperelastic solids under three-dimensional loading
is studied through finite element simulations. The composites are modeled using representative volume
elements with random fiber arrangement and periodic boundary conditions. Different matrices and
volume fractions are considered. It is found that the shear stiffness of composites with Neo-Hookean
components depends on the direction of the applied deformation even when the fibers are not stretched,
which indicates a clear dependance on not only the I1 and I4 invariants, but also on I5. This anisotropy
increases with the fiber concentration. The effect of using an Ogden matrix with increased nonlinearity
is also discussed. Finally, the simulations are compared with suitable homogenization techniques
available in the literature. A prediction using two different values of the shear stiffness is able to
accurately model the response regardless of the loading direction.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Soft solids reinforced with significantly stiffer fibers are used in
technological applications (car tires, carbon fiber-reinforced
elastomers) and can also be found in biological tissue (cornea,
arterial walls). The difference in stiffness between the two compo-
nents can reach several orders of magnitude, which leads to
micromechanics not observed in traditional fiber composites, such
as significant changes in the fiber orientation.

Phenomenological models for the large deformation of fiber
reinforced solids usually follow the framework of Spencer [24],
considering a homogeneous solid whose strain energy density fW
is the sum of two terms:

fW ðI1; I2; I3; I4; I5Þ ¼ fW isoðI1; I2; I3Þ þ fW anisoðI4; I5Þ ð1Þ

where the first term represents an isotropic material, and the
second term takes into account the anisotropy introduced by
the presence of the fiber reinforcements. The invariants I1 to I3

are the invariants of the average Cauchy-Green deformation gradi-
ent C ¼ FTF. These three invariants are isotropic, as opposed to the
fourth and fifth: I4 ¼ NTCN measures the stretch in the fiber
direction, defined by the vector N, while I5 ¼ NTCCN depends on
the fiber stretch and shear and has no straightforward physical
interpretation. In most models each term in Eq. (1) depends on a
single invariant, fW iso ¼ fW isoðI1Þ and fW aniso ¼ fW anisoðI4Þ.

Determining the function fW for matrix-dominated deforma-
tions is particularly difficult. It is not equal to the strain energy

density of the bulk matrix under the same macroscopic deforma-
tion, since it needs to take into account the effect of the inclusions,
ranging from stress concentrations to possible changes in micro-
structure as a result of finite deformations. This is sometimes
achieved by fitting experimental results under different loading
conditions to the force–displacement relationships obtained from
Eq. (1) [20,21]. When the experimental data available is not suffi-
cient, as in the case of fiber reinforced elastomers, models found
in the literature often use simple geometrical approximations
based on periodic microstructures [5,8].

Estimates for the in-plane response of hyperelastic fiber-rein-
forced solids with particular microstructures using the second-
order homogenization scheme have been presented by Ponte
Castañeda and co-workers [16,1]. deBotton [3,4] produced esti-
mates for sequentially-coated composites, obtained by successive
lamination of the previous composite with thin layers of the matrix
phase. These analytical predictions have been compared with finite
element simulations [18] with good agreement up to moderate
values of the volume fraction. Lopez-Pamies and Idiart [15] have
recently proposed an iterative homogenization technique and used
it to produce estimates for the three-dimensional response of fiber
reinforced elastomers with a random distribution of parallel fibers.
This is particularly interesting to model the in-plane buckling of
such composites under bending [11,9], since such instabilities
result in complex three-dimensional deformation of the material.
The applicability of these predictions to three-dimensional loading
has not yet been contrasted numerically or experimentally.

This paper presents a series of numerical simulations in two-
dimensional and three-dimensional representative volume
elements (RVEs) of fiber-reinforced elastomers, with different fiber
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volume fractions and loading directions. The results are compared
to current homogenization models, whose hypothesis and range of
validity are discussed. In particular, it will be shown that the shear
stiffness of the composite depends on the loading direction, even
within the linear regime.

2. Computational model

The composite is idealized as a soft hyperelastic solid reinforced
with perfectly parallel cylindrical fibers several orders of magni-
tude stiffer than the matrix. All the fibers have the same radius r.
The fiber volume fraction is Vf , and four values ranging from 0.2
to 0.5 are considered. It is assumed that no voids exist in the com-
posite, and bonding between fibers and matrix is perfect. The
strain softening reported by López Jiménez and Pellegrino [11] is
therefore neglected here.

A series of 2D and 3D finite element simulations on representa-
tive volume elements (RVEs) have been performed using the com-
mercial package Abaqus. Schematics of the geometry and reference
systems for the models are shown in Fig. 1. The RVEs are square in
the plane perpendicular to the fiber direction, L2 ¼ L3 ¼ L, and have
length L1 along the fiber direction.

The following subsections give details on the model, such as
material properties used for each component, fiber arrangement,
size of the RVE and boundary conditions.

2.1. Material properties

The fibers are modeled as a Neo-Hookean material with elastic
shear modulus lf . The Poisson’s ratio is taken as mf ¼ 0:3, although
the simulations show that the fibers behave as a rigid body, and so
the results are insensitive to the value of mf . The matrix has been
modeled as an incompressible Ogden hyperelastic solid [19], in
which the strain energy Wm takes the form:

Wm ¼
XN

i¼1

2li

a2
i

kai
1 þ kai

2 þ kai
3 � 3

� �
ð2Þ

In order to check the effect of the large strain behavior of the
matrix, three different combinations of N and ai have been consid-
ered. The first one, N ¼ 1 and a ¼ 2, corresponds to a Neo-Hookean
material. The other two are respectively softer and stiffer at large
elongations; the values are shown in Table 1, and the response of
all three matrices to uniaxial tension is shown in Fig. 2. The elastic
shear modulus is lm ¼

PN
i¼1li. It is assumed that lm � lf , which is

the case of typical elastomers reinforced with materials such as
steel or carbon fibers, as well as several biological tissues. In this
case, the results can be scaled by lm, see Section 4.1.

2.2. Boundary conditions and applied loading

Periodic boundary conditions are applied in all faces of the RVE
using the command EQUATION in Abaqus. This requires the mesh
to be identical in all opposite faces of the RVE. The conditions
can be summarized as:

uðL1;X2;X3Þ � uð0;X2;X3Þ ¼ u
1

uðX1; L2;X3Þ � uðX1;0;X3Þ ¼ u
2

uðX1;X2; L3Þ � uðX1;X2;0Þ ¼ u
3

ð3Þ

where u
i

j ¼ FijLj; Lj is the length of the RVE in the jth direction, and F
is the applied deformation gradient, Fij ¼ @xi=@Xj.

The components of u
i

are the displacements of auxiliary dummy
nodes, in which displacement or loadings can be imposed. Due to
the high difference in stiffness between fibers and matrix, the
response of the composite is dominated by the fiber behavior for
any deformation involving stretching of the fibers, I4–1. Since
the goal is to study the dependance on other invariants, loading
will be limited to cases in which no stretching is imposed on the
fibers.

Fig. 1. Representative volume elements (RVEs) used in: (a) two-dimensional and
(b) three-dimensional simulations.

Table 1
Parameters of the Ogden hyperelastic energy functions.

Matrix 1 Matrix 2 Matrix 3

a1 2 1.2 2.5
l1=lm 1 0.8 1.01
a2 0 1 5
l2=lm 0 0.2 0.02
a3 0 0 �1
l3=lm 0 0 �1
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Fig. 2. Response of the three matrices to uniaxial tension: (a) strain energy density
normalized by the initial shear stiffness vs. elongation and (b) nominal stress
normalized by initial shear stiffness vs. elongation.

174 F. López Jiménez / Composites: Part B 59 (2014) 173–180



Download English Version:

https://daneshyari.com/en/article/7213686

Download Persian Version:

https://daneshyari.com/article/7213686

Daneshyari.com

https://daneshyari.com/en/article/7213686
https://daneshyari.com/article/7213686
https://daneshyari.com

