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a b s t r a c t

The surface and nonlocal effects on the nonlinear flexural free vibrations of elastically supported non- 
uniform cross section nanobeams are studied simultaneously. The formulations are derived based on
both Euler–Bernoulli beam theory (EBT) and Timoshenko beam theory (TBT) independent ly using Ham- 
ilton’s principle in conjunction with Eringen’s nonlocal elasticity theory. Green’s strain tensor together 
with von Kármán assumptions are employed to model the geometrical nonlinearity. The differential 
quadrature method (DQM) as an efficient and accurate numerical tool in conjunction with a direct iter- 
ative method is adopted to obtain the nonlinear vibration frequencies of nanobeams subjected to differ- 
ent boundary conditions. Afte r demonstrating the fast rate of convergence of the method, it is shown that 
the results are in excellent agreement with the previous studies in the limit cases. The influences of sur- 
face free energy, nonlocal parameter, length of non-uniform nanobeams, variation of nanobeam width 
and elastic medium parameters on the nonlinear free vibrations are investigated.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction 

Due to superior mechanical, electrical and thermal perfor- 
mances of the nanostructu res with respect to the conventional 
structural materials, they have attracted much attention in modern 
science and technolo gy in recent years; for example, in micro/nano 
electromechan ical systems (MEMS/NEMS) [1] and biosensors [2].
Hence, accurate prediction of their vibrational behaviors becomes 
essential for engineering design and manufactur e.

Since the controlled experiments on nanoscale are difficult to per-
form, the mechanical behaviors of the nanostructures are usually
investigated using mathematical simulations such as atomistic,
atomistic–continuum mechanics and continuum mechanics
approaches. On the other hand, the atomistic and atomistic–
continuum mechanics simulation methods consume much time
and are computationally expensive for analyzing large scale systems.
Thus, because of the simplicity and accuracy, continuum mechanic
approaches are often used. However, the classical continuum theory
cannot predict the size (small scale) effect and size dependence of
material properties of nanostructures. The small scale effect and
the size dependence of material properties are due to the long-range
inter-atomic interaction and the energy associated with atoms at free

surfaces of the nanostructures, respectively. These effects are sepa-
rately simulated based on the continuum approaches.

In order to include the small scale effect, it has been suggested 
that nonlocal continuum theory developed by Eringen [3–5] could
be used in the continuum models for accurate prediction of
mechanical behaviors of nanostructu res [6]. Nonlocal theory of
Eringen is based on this assumption that the stress at a material 
point is considered as a function of the strain field at all material 
points in the continuum body. The inter-atomic forces and atomic 
length scales directly come to the constituti ve relations as material 
paramete rs [3–5].

In traditional continuum mechanics, the surface free energy is
neglected in comparison with the bulk energy because it is associ- 
ated with only a few layers of atoms near the surface and the ratio 
of the volume occupied by the surface atoms and the total volume 
of material of interest is extremely small [7]. As the structural size 
decrease s towards the nanoscale regime, due to the high surface/ 
volume ratio, the surface-to-bulk energy ratio increases. Hence,
the surface free energy becomes a significant part of the total elas- 
tic potential energy and should be taken into account.

Both of the experime ntal observations [8] and theoretical anal- 
yses [9] indicate that surface layers differ from their bulk counter- 
parts in that their elastic responses are intrinsically size-depe ndent 
and consequently, the physical and chemical properties of nanom- 
aterials become size-depend ent. Gurtin and Murdoch [10,11] pre-
sented a surface elasticity theory by modeling the surface as a
two-dimens ional membrane adhering to the underlying bulk 
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material without slipping to account the effect of surfaces/int er- 
faces on mechanical propertie s. It has been shown that with cor- 
rectly choose surface elastic properties, this surface elasticity 
theory explains various size-depe ndent phenomena at the nano- 
scale and the predictions fit well with atomistic simulations and 
experimental measurements [7,12,13].

In recent years, some studies have been performed to investi- 
gate the surface effects on the linear and nonlinear free vibration 
behaviors of uniform section nanobeams ; see for example Refs.
[14–21]. However, in these interesting studies the nonlocal effect 
was not considered. On the other hand, based on the nonlocal 
constitutive relation of Eringen and without including the surface 
effects, some researchers attempted to develop nonlocal nanobeam 
models and applied them to analyze vibration behaviors of nano- 
rods and nanobeams ; see for example Refs. [22–30]. Only a few 
number of studies investiga ted the surface and nonlocal effects to- 
gether on the linear free vibration behaviors of nanobeams [31,32].
Lee and Chang [31] obtained the natural frequency of nanotubes 
using the nonlocal Timoshenko beam theory with consideration 
of surface effects. Results showed that the nonlocal effect on the 
frequency ratio is significant, particularly for a smaller value of as- 
pect ratio and at the higher-order modes. In addition, the fre- 
quency ratio also increased when the surface effects were taken 
into account in the analysis. In another work, they examined the 
surface and small-scale effects on frequency of a non-uniform 
nanocantile ver beam using the nonlocal elasticity theory [32]. Re- 
sults showed that the frequenc y of the nanocantilever beam is sen- 
sitive to the surface and nonlocal effects.

From the literature survey, it is found that the surface and non- 
local effects on the nonlinear free vibration analysis of nanobeams 
have been investiga ted separately . On the other hand, the previous 
studies showed that both these phenomeno n have significant ef- 
fects on the vibrational behaviors of nanobeams. Consequently,
to perform an accurate vibration analysis, the formulation should 
include both these effects. In most practical circumstanc es, how- 
ever, thin elastic nanobeams commonly sustain large deformation 
where the deflection is of order of the nanobeams thickness. The 
infinitesimal deformat ion model then is invalid, and a geometri- 
cally nonlinear model is evidently needed. Motivated by this con- 
sideration, this paper investigates the nonlinear free vibration of
variable width nanobeams embedded in an elastic medium with 
consideration of surface and nonlocal effects simultaneou sly. The 
formulation is derived based on both Euler–Bernoulli beam theory 
(EBT) and Timoshen ko beam theory (TBT) in conjunction with von 
Kármán geometri c nonlinearity. The different ial quadrature meth- 
od (DQM) is employed to solve the nonlinear free vibration govern- 
ing equation s of nanobeams with arbitrary boundary conditions.
The effects of surface elasticity, residual surface tensions, nonlocal 
parameter, variation of nanobeam width, elastic medium parame- 
ter and transverse shear deformation of the nanobeams on the 
nonlinear natural frequenc ies of the nanobeams are studied.

2. Mathematical modeling 

Consider a nanobeam of length L, varying width b(x) and thick- 
ness h as shown in Fig 1. A Cartesian coordinate system (x,z) is
used to label the material points of the nanobeam in the unstressed 
reference configuration. The displacemen ts �u (in the x-directio n), �w
(in the z-direction) can be approximat ed as,

�uðx; z; tÞ ¼ uðx; tÞ � z
@w
@x
þ zk

@w
@x
þu

� �
; �wðx; z; tÞ ¼ wðx; tÞ

ð1a;bÞ

where u and w are the axial and transverse displace ment compo- 
nents of a material point on the mid-plane of the beam (i.e. z = 0);
u is the bending rotation of beam cross section about the y-axis;
also, k is a consta nt paramete r, which switch Eq. (1a) to EBT k = 0
or TBT k = 1.

Using Eq. (1), the nonzero Green’s strain tensor components 
subjected to von Kármán assumptions in terms of displacemen t
and rotation components become,

exx ¼ e0
xx � z

@2w
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; cxz ¼ k
@w
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þu

� �
ð2a—cÞ

The classical constituti ve relation of the surface boundari es
(y = ±b/2, z = ±h/2) as given by Gurtin and Murdoch [10,11] and also 
the classical constitutive relations for the internal material of the 
beam (�b/2 < y < b/2, �h/2 < z < h/2) can be expresse d as

rs ¼ s0 þ Esexx; rxx ¼ Eexx; sxz ¼ kksG
@w
@x
þu

� �
ð3a—cÞ

where s0 and Es are the residua l surface tension in the axial direc- 
tion and the surface elastic modulus, respec tively; also, E, G and
ks are Young’s modulus , shear modulus and shear correct ion factor 
of the internal materi al of the beam. The stress resultants, in general 
are defined as

Nxx ¼
Z h=2

�h=2
rxxbdzþ

I
C
rsds¼ðEAÞ�e0

xxþ2s0ðbþhÞ; Q x ¼
Z h=2

�h=2
sxzbdz¼ kksGA
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þu
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I
C
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where A = bh and the effective in-plane and flexural rigidities are,

ðEAÞ� ¼ EAþ 2Esðbþ hÞ; ðEIÞ� ¼ E
bh3

12

 !
þ Es h3

6
þ bh2

2

 !
ð5a;bÞ

Based on Eringen’s nonlocal elasticity theory [3–5], size effects 
are taken into account by the integration of a scale paramete r into 
classical continuum models. In the nonlocal elasticity theory, the 
stress at a reference point is assumed to be a functional of the 
strain field at every point in the body. In this way, the internal 
characteri stic length can be considered in the constitutive relations 
simply as a material parameter by the following differential consti- 
tutive relation 

1� l @2

@x2

 !
rnl

ij ¼ rl
ij; l ¼ ðe0lÞ2 ð6a;bÞ

Fig. 1. The geometry of nanobeam.
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