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a b s t r a c t

In practice, a structure is subjected to given loads and boundary conditions, and a multitude of stress and
strain states may exist in the structure; hence, optimal construction of a laminate in a structure cannot be
sought by considering only a limited number of stress resultants in the existence of multiple load cases.
Then, another design objective based on optimization of a laminate for the worst possible load case
emerges which is formulated as a minimax problem whose solution is shown to be equivalent to singular
value minimization problem. As the squares of singular values are the bounds of power, energy and power
spectral density ratios between the input and output vectors, shaping the singular values of a composite
material is equivalent to shaping the response of the material. As a novel approach, singular values are
used for the layout optimization of laminate. In this method, the main idea is minimization of the largest
singular value of the transfer function matrix between force/moment resultants and outputs stress/strain.
Thus the overall optimization problem is reduced to a simple minimization problem. Numerical examples
and finite element simulations are presented for several test problems. In particular, it is shown that the
use of singular values and singular vectors is computationally advantageous in case of multiple load case.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Mechanics of composite materials and design aspects of these
materials have been the subject of numerous studies in literature
in which material stiffness or strength is optimized by using some
numerical or graphical techniques [1–3]. While continuous optimi-
zation techniques were used for solving optimization problems,
researchers recently have focused on discrete optimization tech-
niques since design of a composite laminate stacking sequence em-
ploys discrete optimization techniques to determine discrete layer
thickness values and orientation angels. In general, composite
materials are designed for minimum weight, optimized stiffness or
maximum laminate strength. Since minimum weight design formu-
lations do not depend on the orientation of the layers, convergence
difficulties may arise in optimization tasks; therefore, formulations
based on maximization of laminate strength are proposed [4,5]. For
instance, for some in-plane load cases, a quadratic first-play failure
criterion based on an approximate failure envelope in the strain
space is used in [5]. In order to overcome this difficulty, Huang and
Kroplin [6] used a two-level design process for optimum laminate
design by successively optimizing the ply orientation angles to min-
imize the strain energy and ply thickness to minimize the weight.
Zhang et al. proposed an extended stress-based method for orienta-
tion angle optimization of laminated composite structures [7]. An
integrated model for optimum weight design of symmetrically

laminated composite plates subjected to dynamic excitation is pre-
sented in [8]. A new variant of the simulated annealing algorithm
was proposed to optimize the lay-up design in [9] where they aimed
to minimize the thickness (or weight) of laminated composite plates
subject to both in-plane and out-of-plane loading. Irisarri et al. [10]
presented a multiobjective optimization methodology for compos-
ite stiffened panels. The work of Kim et al. [11] can also be cited
where by using an optimal design formulation based on the state
space method, Tsai-Wu failure criterion is used as the objective
function for optimal laminate design. In [12], stacking sequence
combination of a laminate is optimized such that the strain under
an applied load is reduced with the lowest ply number. The loads
are considered to be varying over the large composite panels and a
global optimization algorithm is used to obtain the optimum design
in [13]. The works [14] for minimum weight design of panels for post
buckling response, [15] for optimal design of laminates for funda-
mental frequency, [16] for optimum design of shells for maximizing
the energy-absorption, [17] for optimum design of tapered lami-
nates, and [18] for optimal design of composite turbine blades can
also be cited. Zhang et al. [19], proposed an extended stress-based
method to reduce the huge number of the design variables in the ori-
entation optimization of composite structures. They minimized the
mean compliance under the multiple load cases or maximized the
eigenvalues of a composite structure. The design of the composite
laminated lay-ups was formulated as discrete multi-material selec-
tion problems [20]. The minimum compliance, mass constrained
multiple load case problem was formulated and solved in their
study. Shokrieh et al. [21], were concerned in their study with
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designing modified tabbing systems for the testing of composite
thin-walled tubes with a symmetric layup. In their study, stiffness
was maximized at minimum weight by developing a minimum
weight optimization method for sandwich structure under com-
bined torsion and bending loads. Stegmann and Lund have proposed
the Discrete Material Optimization (DMO). The method was used for
material optimization of general composite laminate shell struc-
tures. The method uses gradient information combined with math-
ematical programming to solve a discrete optimization problem.
The DMO method is derived from multi-phase material optimiza-
tion in the sense that element stiffness is computed from a weighted
sum of candidate materials. The aim of the optimization is for each
layer to choose the material from the set of candidate materials
either isotropic or orthotropic with a given fiber angle [22]. Later
Lund and Stegmann [23], used this method (DMO) on multi-phase
topology optimization where the material stiffness was computed
as a weighted sum of candidate material and applied the method
to wind turbine blades. Bruynell and Fleury [24] used sequential
convex programming for optimization of composite structures. This
is an approximation concept to solve the optimization problem.
Bruyneel and Duysinx published a note on the design of laminates
subject to restrictions on the ply strength. The minimum weight de-
sign was considered. It was shown that the formulation includes sin-
gular optima, similar to the ones observed in topology optimization
including local stress constraints [25]. Bruyneel [26], in his paper
proposed a new parameterization of the mechanical properties for
the optimal selection of materials. He compared his approach with
multi-phase topology optimization (i.e. Discrete Material Optimiza-
tion—DMO). Bruyneel computed material stiffness as a weighted
sum of the candidate material properties, and the weights based
on the shape functions of a quadrangular first order finite element.
Found out that, compared to DMO, this method (SFP) required fewer
design variables. Bruyneel et al. [27] developed an optimization pro-
cedure based on multi-phase topology optimization. Their formula-
tion relied on the SFP (Shape Functions with Penalization)
parameterization, in which the discrete optimization problem is re-
placed by a continuous approach with a penalty to exclude the inter-
mediate values of the design variables. Gao et al. [28] proposed a
parameterization scheme named bi-value coding parameterization
(BCP). This method also used to deal with the layout design of the
discrete material orientations for laminate composite. The theoret-
ical expression of the BCP was constructed in an explicit way for
any number of materials. The BCP can be considered as an extension
of SFP and particularly well suited for optimization problems with a
huge number of discrete orientation or candidate materials. How-
ever DMO/SFP/BCP methods are presented to find structural topol-
ogy and optimal fiber orientations.

In most of the studies cited above, it is common that laminate
parameters are optimized for certain load cases and some averages
of stress values, constant stress resultants, moment resultants and/
or shear resultants are employed in designing the laminates; hence,
such designs are only optimal for some load cases for which they are
optimized. In practice, a structure is subjected to given loads and
boundary conditions and a multitude of stress and strain states
may exist in a structure; hence, optimal construction of a laminate
in a structure cannot be sought by considering only a limited num-
ber of stress resultants in the existence of multiple load cases. There-
fore, another design objective, called maximization of stiffness or
minimization stress for the worst possible load case, emerges to take
into account all possible load cases. Motivated by this fact in this pa-
per, optimum laminate design problem for the worst possible load
case is formulated as a minimax problem whose solution is shown
to be equivalent to a singular value minimization problem; subse-
quently, singular values are employed for designing laminates.

The singular value decomposition (SVD) is a very powerful tool
that is utilized for studying input–output properties in multivariable

control systems, e.g., [29,30]. The SVD is employed for studying the
effects of mode localization on the input–output directional proper-
ties of structures in [31] and analyzing design sensitivities of struc-
tures in [32]. Gerzen et al. [33] studied the inner structure of
sensitivities in nodal based shape optimization by the singular value
decomposition. Furukawa and Michopoulos presented a methodol-
ogy that updates the loading path at every sensor reading to identify
elastic moduli of anisotropic materials; they applied the SVD to the
reliability of elastic moduli [34]. In this paper, the SVD is applied to
continuous formulations of optimum laminate design problem.
Considering stress and strain equations, laminated composite mate-
rials are optimized for the worst possible load case by using singular
values. Singular values of the equations of a structure have a special
meaning since the squares of singular values are bounds of power,
energy and power spectral density ratios between the input and out-
put vectors; thus, shaping the singular values of a structure is equiv-
alent to shaping the behavior of the structure [35]. The SVD based
analysis is well suited to study input–output directional relation-
ships, because associated singular vectors tell us how the outputs
(strain or stresses) are related to the inputs (loads). Numerical exam-
ples are presented to illustrate the proposed approach. Briefly, it is
shown that using singular values is computationally advantageous
in case of multiple load case.

The outline of the article is as follows; Some properties of the
SVD are revised in Section 2, strength and stiffness design prob-
lems of laminates are summarized in Section 3. and then the SVD
is introduced to laminate equations in Section 4. The proposed
approach is implemented into model problems in Section 5, and
conclusions are drawn in Section 6.

2. Properties of the singular value decomposition

Note that the exposition of the material on the SVD is based on
that of [36–38]. Consider the matrix A 2 Cm�n, then there exist uni-
tary matrices U 2 Cm�m,S 2 Rm�n and V 2 Cn�n called the SVD of A
such that A can be factored as

A ¼ USVH ð1Þ

where columns of U = [u1ju2jjum] and V = [v1jv2jjvn] are respec-
tively, the left and right singular vectors, and VH is the conjugate
transpose of V. If m = n, then S = Diag{l1,l2, . . .,lm}; on the other
hand, if m > n then,

S ¼
Sd

Oðm�nÞ�n

� �
ð2Þ

If m < n, then

S ¼ ½Sd Om�ðn�mÞ� ð3Þ

where Sd = Diag{l1, l2, . . . , lm}, p = min(m,n), Oi�j 2 Ri�j whose ele-
ments are all zero, and li are singular values of A. We adopt the
ordering l1 P l2 P . . .P ln P 0. Note that ui and vi are respec-
tively, orthonormal eigenvectors of AAH and AHA; namely,

UUH ¼ I and AAHU ¼ US2 ð4Þ
VVH ¼ I and AHAV ¼ VS2 ð5Þ

where I is the identity matrix. In addition, for a square matrix A

if A ¼ USVH; A�1 ¼ VS�1UH ð6Þ

Although the singular values of A are uniquely defined, the singular
vectors are not. If A = USVH, then A = U0SV

0H, where U0 = Uejh,
V0 = Ve�jh and j is the imaginary unit, is also the SVD of A for any h.
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