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a b s t r a c t

Nonlinear free vibration of simply supported FG nanoscale beams with considering surface effects (sur-
face elasticity, tension and density) and balance condition between the FG nanobeam bulk and its sur-
faces is investigated in this paper. The non-classical beam model is developed within the framework of
Euler–Bernoulli beam theory including the von Kármán geometric nonlinearity. The component of the
bulk stress, rzz, is assumed to vary cubically through the nanobeam thickness and satisfies the balance
conditions between the FG nanobeam bulk and its surfaces. Accordingly, surface density is introduced
into the governing equation of the nonlinear free vibration of FG nanobeams. The multiple scales method
is employed as an analytical solution for the nonlinear governing equation to obtain the nonlinear natural
frequencies of FG nanbeams. Several comparison studies are carried out to demonstrate the effect of con-
sidering the balance conditions on free nonlinear vibration of FG nanobeams. Lastly, the influences of the
FG nanobeam length, volume fraction index, amplitude ratio, mode number and thickness ratio on the
normalized nonlinear natural frequencies of the FG nanobeams are discussed in detail.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are classified as novel
composite materials. These materials are heterogeneous composite
materials, in which the material properties vary continuously from
one interface to the other. This is achieved by gradually varying the
volume fraction of the constituent materials. During the past dec-
ade, FGMs have been widely used in various aspects of engineering
sciences, such as aerospace, nuclear, civil, automotive, optical, bio-
mechanical, electronic, chemical, mechanical, and shipbuilding
industries. With the development of the material technology,
FGMs have been employed in micro/nano-electro-mechanical sys-
tem (MEMS/NEMS) [1–3]. Because of high sensitivity of MEMS/
NEMS to external stimulations, understanding mechanical proper-
ties and behavior of them are of significant importance to the de-
sign and manufacture of FG MEMS/NEMS.

Structures at nanometer length scale are known to exhibit size-
dependent behavior [4–6]. This is attributed to the fact that the
fraction of energy stored in the surfaces becomes comparable to
that in the bulk due to the relatively high surface area to volume
ratio [7]. The classical continuum theories, in which the surface en-
ergy effects are normally neglected, need to be modified to incor-

porate the size-dependent behavior. It is assumed that the
surface is at least a few atomistic layers thick to justify the appli-
cability of the notion of stresses and strains.

Gurtin and Murdoch [8,9] presented a 3-D theory based on con-
tinuum mechanics concept that takes into consideration the effects
of surface energy. In their work, a surface is regarded as a mathe-
matical deformable membrane of zero thickness fully adhered to
the underlying bulk material. The equilibrium and constitutive
equations for the bulk are the same as those in the classical theory
of elasticity. In addition, a set of constitutive equations and the
generalized Young–Laplace equation are applied to the surface.
Lim and He [10] developed a model based on the Gurtin–Murdoch
theory to analyze the deformations of a nanoscale film under bend-
ing. Lu et al. [11] generalized the thin plate model to include the
normal stresses in the bulk and presented a modified theory for
thin and thick plates. In this regard, they assumed a linear variation
through the thickness of the transverse normal stress so that the
surface balance equations are satisfied. They presented solutions
for deflections (static) and natural frequencies of an infinitely wide
plate with finite length. Several studies have fabricated nanometer
scale electromechanical beam resonators and examined their re-
sponses experimentally [12–15].

In recent years, studies on FG nanoplates and nanobeams with
surface effects, as the based NEMS devices, have attracted increas-
ing research efforts. Lü et al. [16,17] developed a generalized re-
fined theory including surface effects for functionally graded
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films. They modeled the film bulk based on the classical Kirchhoff
and the classical generalized shear deformable theories. For satis-
fying the surface balance equations, unlike the linear assumption
made by Lu et al. [11] for homogeneous films, the transverse nor-
mal stress was assumed to vary in a cubic relation through thick-
ness for FGM films. In another work, Lü et al. [18] investigated
nonlinear responses of FGM nano-films incorporating surface ef-
fects. They modeled the film bulk based on the Kirchhoff plate the-
ory and considered a linear variation for the transverse normal
stress. It was showed that the deflection of nano-film was scaling
dependent. Ke et al. [19] investigated the nonlinear free vibration
of functionally graded nanocomposite beams reinforced by sin-
gle-walled carbon nanotubes (SWCNTs) based on Timoshenko
beam theory and von Kármán geometric nonlinearity. Ansari
et al. [20] considered the free vibration characteristics of micro-
beams made of functionally graded materials (FGMs) based on
the strain gradient Timoshenko beam theory. They showed that
the value of gradient index plays an important role in the vibra-
tional response of the FG microbeams of lower slenderness ratios
and by increasing the length to thickness ratio of the FG micro-
beam, the value of dimensionless natural frequency tends to de-
crease for all amounts of the gradient index. Ke et al. [21]
studied nonlinear free vibration of FG microbeams based on the
modified couple stress theory and von Kármán geometric nonlin-
earity. It was found that both the linear and nonlinear frequencies
increase significantly when the thickness of the FGM microbeam
was comparable to the material length scale parameter. Asgharif-
ard Sharabiani and Haeri Yazdi [22] studied surface effects includ-
ing surface elasticity and surface tension on nonlinear free
vibration of FG nanobeams based on the Euler–Bernoulli beam the-
ory. They did not consider the surface equilibrium condition in der-
ivation of the governing equation.

The main goal of this work is to study the surface effects, includ-
ing surface elasticity, tension and density, on the nonlinear free
vibration of FG nanobeams based on the Euler–Bernoulli beam the-
ory with considering the surface equilibrium condition. The von
Kármán geometric nonlinearity is taken into account with the
assumption of cubic variation of normal stress through the thick-
ness. The method of multiple scales has been used as an analytical
solution for the nonlinear governing equation.

2. Problem formulation

Consider a FG nanobeam with length L (0 6 x 6 L), thickness h
(�h/2 6 z 6 h/2), and width b (�b/2 6 y 6 b/2). The FG nanobeam
is generally composed of two different materials at the top and
the bottom surfaces (as shown in Fig. 1). Poisson’s ratio m is as-
sumed to be constant, i.e. m = 0.3, whereas bulk elastic modulus
E(z), mass density q(z), surface elastic modulus Es(z), and residual
surface stress s0(z) are assumed to vary in the thickness direction
according to power law distribution:

EðzÞ ¼ ðE1 � E2Þ
2zþ h

2h

� �m

þ E2 ð1:aÞ

qðzÞ ¼ ðq1 � q2Þ
2zþ h

2h

� �m

þ q2 ð1:bÞ

EsðzÞ ¼ ðEs
1 � Es

2Þ
2zþ h

2h

� �m

þ Es
2 ð1:cÞ

s0ðzÞ ¼ ðs0
1 � s0

2Þ
2zþ h

2h

� �m

þ s0
2 ð1:dÞ

where, the subscripts 1 and 2 denote the top surface and bottom
surface, respectively, and a volume fraction index m determines
the variation profile of material properties across the FG nanobeam
thickness.

Since there is no slipping between two surface layers and the
underlying material, the displacement in the whole beam is con-
tinuous. Upon the Euler–Bernoulli beam model, the displacement
field at any point of the beam (the bulk and the surface layers)
can be written as

uxðx; z; tÞ ¼ Uðx; tÞ � z
@W
@x

ð2:aÞ

uzðx; z; tÞ ¼Wðx; tÞ ð2:bÞ

where t is time, U(x, t) and W(x, t) are displacement components of
the mid-plane along x and z directions, respectively.

The von kármán nonlinear strain–displacement relationship is
presented as

exx ¼
@ux

@x
þ 1

2
@uz

@x
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¼ @U
@x
� z

@2W
@x2 þ

1
2

@W
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ð3Þ

Assuming a FG material and neglecting any residual stresses in
the bulk due to surface stress, the relevant bulk stress–strain rela-
tion of FG nanobeam can be written as

rxx ¼ EðzÞexx þ mrzz ð4Þ

The surface constitutive equation [8,23] can be given by

ðsxxÞ1;2 ¼ ðs0Þ1;2 þ ðE
sÞ1;2

@U
@x
� z

@2W
@x2 þ

1
2

@W
@x

� �2
 !

ð5:aÞ

ðszxÞ1;2 ¼ ðs0Þ1;2
@W
@x

� �
ð5:bÞ

In which sxx and szx are surface stresses.
The stresses of the surface layers must satisfy the following

equilibrium relations [8,23]

ðsþbi;bÞ1 � ðrþizÞ1 ¼ ðq0Þ1
@2uþi
@t2

 !
1

at z ¼ þh=2; ð6:aÞ

ðs�bi;bÞ2 � ðr�izÞ2 ¼ ðq0Þ2
@2u�i
@t2

 !
2

at z ¼ �h=2; ð6:bÞ

where the surface stresses of the FG nanobeam are denoted by sþbi

and s�bi. rþiz ¼ rizðz ¼ þh=2Þ and r�iz ¼ rizðz ¼ �h=2Þ are bulk stres-
ses. uþi ¼ uiðz ¼ þh=2Þ and u�i ¼ uiðz ¼ �h=2Þ are the displacement
of surface layers in the i-direction at z = ± h/2, respectively. In Eq.
(6.a), (6.b), b = x, y and i = x, y, z.

By substituting Eqs. (2.a), (2.b) and (5.a), (5.b) into (6.a), (6.b),
the following equations can be obtained,

ðrzzÞ1 ¼ s0
1
@2W
@x2 � q0

1
@2W
@t2 ð7:aÞ

ðrzzÞ2 ¼ �s0
2
@2W
@x2 þ q0

2
@2W
@t2 ð7:bÞ

Fig. 1. Geometry of a FG nanobeam.
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