Accepted Manuscript

Micro-mechanical damage model accounting for composite material nonlinearity due to matrix-cracking of unidirectional composite laminates

Ghazi A.F. Abu-Farsakh, Haitham M. Al-Jarrah

PII: S0266-3538(18)30237-9

DOI: 10.1016/j.compscitech.2018.08.012

Reference: CSTE 7345

To appear in: Composites Science and Technology

Received Date: 28 January 2018

Revised Date: 21 June 2018

Accepted Date: 10 August 2018

Please cite this article as: Abu-Farsakh GAF, Al-Jarrah HM, Micro-mechanical damage model accounting for composite material nonlinearity due to matrix-cracking of unidirectional composite laminates, *Composites Science and Technology* (2018), doi: 10.1016/j.compscitech.2018.08.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Micro-mechanical damage model accounting for composite material nonlinearity due to matrix-cracking of unidirectional composite laminates

Ghazi A. F. Abu-Farsakh¹ and Haitham M. Al-Jarrah²

Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology, PO Box 3030, Irbid 2210, Jordan

¹Corresponding author: Ghazi Abu-Farsakh, ghazi@just.edu.jo

²Second Author: Haitham M. Al-Jarrah, haithamaljarrah66@yahoo.com

Abstract

A new micromechanical damage model for predicting the effect of matrix-cracking on the mechanical behavior of the composite material is proposed. The model is based on the volumetric change that occurred due to the presence of cracks in a composite lamina due to uniaxial off-axis loading. It determines the volumetric crack-density (VCD) by combining the macro-mechanical and micro-mechanical principles. A representative volume-element is proposed that determines the material mechanical properties (E₁, E₂, G₁₂ and ν_{12}) in terms of crack-density, fiber and matrix properties and initial volume-fraction of fibers. The rule-of-mixture in combination with Halpin-Tsai model is used to determine the mechanical properties of a cracked composite lamina. It has been shown that, matrix-cracking is the main cause for composite-material nonlinearity. Moreover, the model has been shown to give a reliable and reasonable predictions of the VCD and the tangential damage-factor (TDF) for various fiber/matrix systems using the corresponding available data from literature. An alternative secant damage-factor is being proposed, which has a linear relationship with the VCD. In order to validate the model, two composite materials; Boron/Epoxy (Narmco-5505) and Graphite/Epoxy (4617/Modmor-II), have been considered using laminates at different fiber-orientation angles. The maximum volume-crack-density (MVCD) and maximum secant damage-factor (MSDF) are obtained using equations that depend on the fiberorientation angle and the initial material mechanical properties.

Keywords: Micro-damage-model, composite-material-nonlinearity, composite-laminate, volumetric-crack-density, secant-damage-factor.

Download English Version:

https://daneshyari.com/en/article/7214016

Download Persian Version:

https://daneshyari.com/article/7214016

<u>Daneshyari.com</u>