
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

SYNTHESIS OF PARALLEL CONTROLLERS THROUGH A LOGIC MATRIX MODEL 
 
 

Camilo Quintáns*, Celso F. Silva** and Enrique Mandado* 
 
 

*Department of Electronic Technology, Institute of Applied Electronic 
**Department of Systems Engineering and Automatics 

University of Vigo, Spain 
{quintans, csilva} @uvigo.es 

 
 
 

 
Abstract: This paper gives a brief summary of the studies carried out about how to 
implement parallel logic controllers in reconfigurable circuits of the FPGA (Field 
Programmable Gate Array) kind. The necessity to base it on a mathematical model which 
is easily joined to the graphic editor of the designs and to the VHDL description is 
focused on. Also the necessity to obtain a surround of automatic systems development 
which integrates all the necessary elements in order to automate the whole process of 
development, debugging, configuration and verification is discussed. In this way a 
realistic system with a practical application has been achieved. The descriptive part of this 
study is focused on the description of the model, its validation, using an example and its 
test, using simulation. Finally, a system integrating all elements is described. Copyright © 
2006 IFAC 
 

Keywords: FPGA, Petri nets, VHDL. 
 
 
 
 

 
1. INTRODUCTION 

 
Several alternatives exist to implement parallel logic 
controllers, for instance: based on ladder diagrams 
(Welch, 2000), on Petri nets (PN) (Fernandes, 1997) 
or based on the Sequential Function Chart (SFC) 
(Adamski, 1998). PN provide a unified model for 
both sequential (only one state can be active at a 
time) and parallel (several states can be active 
simultaneously) (Pardey and Bolton, 1991). Hence, 
PN are commonly used to model controllers. The 
theory of synchronous parallel controllers is well 
known and is well advanced. A good tutorials to 
introduce the fundamental concepts of PN are given 
by Murata (1984) and Zurawski and Zhou (1994). 
Little may be added about PN, however, advances 
may still be made on how to implement them in a 
specific technology. The designed PN are usually 
implemented in a programmable processor, in other 
words, through software. 
 
Due to the special advantages that PN have regarding 
the specification of concurrent or parallel digital 
controllers they can be implemented in an inherently 

parallel technology (Wegrzy et al., 1998). In this 
surround digital circuits fit naturally; there is no 
better way of carrying out a parallel design than with 
a dedicated circuit. Traditionally dedicated circuits 
were carried out by means of printed circuit board 
with MSI or LSI integrated circuits or with ASIC, 
until the PLDs and FPGAs appeared. With these a 
totally parallel dedicated circuits can be made by 
simply configuring the logic elements (LE) in a 
suitable way. Since the appearance of these devices 
the idea of configuring them so that they implement 
logic controllers has arisen and several studies have 
been undertaken about this (Fernandes, 1997). 
 
In order to be able to apply the reconfigurable circuit 
technology to the implementation of automatic 
controls for real applications, the automation of the 
design and implementation process is necessary. To 
achieve this, a system model and an algorithm which 
translates it into a hardware description, for example 
VHDL (IEEE std. 1076 – 2002) must be available. 
Once the VHDL description is obtained, the 
synthesis for the FPGA device to be used is carried 
out. When the VHDL description is done at a 



     

structural description a more efficient synthesis can 
be obtained (Soto and Pereira, 2001), above all if 
specialised components are designed instead of 
directly implementing the places and transitions of 
the PN (Uzam et al., 2001). However, the increase in 
the quantity and complexity of the LE which are 
integrated in the FPGA devices means that nowadays 
it is not worth making an effort to use models based 
on components and due to this the use of behavioural 
models has become more common. 
 

2. PERSPECTIVE 
 
Many efforts have been made to develop translators 
from PN to VHDL but they do not form part of a 
platform which implements a complete system of 
development of logic automatisms (including 
simulation, configuration and verification) or have 
not lived up to expectations (Biesnack, 1993). On the 
other hand these translators which model PN in 
VHDL are usually based on the interpretation of 
pseudo code or a formal language based on rules 
(Fernandes et al., 1997; Adamski and Monteiro, 
2000). These methods of modelling do not follow a 
mathematical notation on which one can work and 
which may be directly translatable to VHDL. 
 
These translators based on intermediate languages 
could complicate the transformation of the model 
which the user has of the system to a useful model in 
order to implement it in VHDL, in this case means 
an intermediate step, whereas a mathematical model 
is more universal and does not add more complexity 
than that of the represented system. Furthermore, it is 
easier to generate a mathematical notation by the 
graphic editor than to generate a pseudo code that 
requires a greater abstraction level. 
 
This study aims to give a new idea to mathematically 
model the PN in a way that aids the automation of 
the development of automatic systems of control. 
This idea is not exactly new (Murata, 1984), 
although the models used have been designed mainly 
to be implemented through software, in order to be 
able to determine their behaviour through simulation 
or to optimize the necessary resources (Pardey, 1992; 
Kozlowski, 1995). 
 
In the following sections the logic matrix model 
implementing logic controllers and its integration in 
a platform, which implement logic controllers, are 
described. 
 

3. DESCRIPTION OF THE LOGIC MATRIX 
MODEL 

 
In this section the definition of the elements of the 
model and then the intermediate calculations to reach 
the general equation are shown through an example. 
Finally, the results obtained by the simulation and 
the FPGA resources consumption are presented. 
 
 
 
 

 
3.1. Definition of the components in a Petri net 

description. 
 
Terms and definitions utilized by the PN matrix 
model implementing a logic controller are presented 
in Table 1. The dimensions of the matrixes in the 
model are shown in Table 2. 
 

Table 1 Definitions 
 

 
CP  Current Matrix with the current marked. 
NP  Next Matrix with the next marked. 
T   Matrix of activation of transitions. 
U   Input map. 
Y   Output map. 
n   Number of places.T 
m   Number of transitions. 

it   Transition ith, i=1,2…m. 

ip   Place i-ésimo, i=1,2…n. 

if  Logic function of the ith transition, i=1,2…m. 

TI  Matrix of the inputs arcs to the transitions. 
The coefficient ijai  ∈  {0,1} / 1=ijai  if ∃ 

an arc between a the place jp  and the 

transition it  ; 0=ijai  on the contrary. 

TO  Matrix of the outputs arcs of the transitions. 
The coefficient ijao  ∈  {0,1} / 1=ijao  if ∃ 

an arc between the transition it  and the place 

jp ; 0=ijao  on the contrary. 

F  Matrix of the logic equations of the 
transitions. The coefficient if  is a function of 

the inputs variables iu  of the input map [ ]U . 

 
 
 

Table 2 Dimension of the dot-matrix model 
 

Matrix    Dimension 
TI     nm ×  
TO     nm ×  
F      m×1  
CP     n×1  
NP     nm ×  
T      m×1  

 
 
3.2 Mapping into matrix equation model of a Petri 

net with n places and m transitions. 
 
According to the above definition of a Petri net the 
example of the Fig. 1 is developed. In this example 
the number of places is n=5 and the number of 
transitions is m=4. 
 



Download English Version:

https://daneshyari.com/en/article/721448

Download Persian Version:

https://daneshyari.com/article/721448

Daneshyari.com

https://daneshyari.com/en/article/721448
https://daneshyari.com/article/721448
https://daneshyari.com

